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Abstract

We estimate the process of the U.S. consumption growth non-

parametrically. Agents in the model behave as if they had pessimisti-

cally distorted beliefs. If we keep the strength of the distortion con-

stant, then the estimated nonparametric distribution has a substantial

edge over the normal distribution in matching the facts about asset

returns. But the same distortion applied to the nonparametric distri-

bution produces a less realistic belief, i.e. that is farther away from

the original distribution. The advantage of the nonparametric distri-

bution then disappears once we insist that agents’ beliefs remain close

to the original distribution.
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1 Introduction

The distribution of consumption growth is one of the key factors determining

asset returns. The empirical distribution of the U.S. consumption growth,

unlike the normal distribution that is widely used in theoretical models, is
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skewed and fat-tailed. How should the investor facing such a consumption

process invest? Because the empirical distribution is skewed towards adverse

low-growth outcomes the investor should buy risk-free bonds that guarantee

a fixed return independently of the consumption growth rate and he should

avoid risky stocks that provide low return precisely in the states when they

are needed most, when the consumption growth is low. But could these fea-

tures of the consumption growth process alone explain the two long-standing

asset return puzzles described in Mehra and Prescott [1988]: the low risk free

rate of return and the high risk premium?

Two deviations from normality were widely studied by the literature.

First, Rietz [1988] and Barro [2006] assume that the consumption growth is

subject to rare disaster shocks that are infrequent large decreases. Second,

Bansal and Yaron [2004] assume that consumption growth is in part driven

by a small but highly persistent component, often referred to as long-run

risk. The above assumptions induce caution on the part of model agents,

that is they invest more in safe bonds and less in risky equity than they

otherwise would. This cautious behavior drives the risk-free rate of return

down and the risk premium up. While being successful explanations, both

of the distributional assumptions are difficult to verify. For example, Barro

[2006] assumes that consumption could decline 29% in any given year with

probability 1.7%. This assumption is an extrapolation from a heterogeneous

sample of advanced economies, many of which suffered from wars and other

periods of instability avoided by the U.S. Could such the disaster event oc-

cur in the U.S.? Possibly, but it is very unlikely. Hansen et al. [2008] find

that the macroeconomic data is too short to identify the long-run risk com-

ponent assumed in Bansal and Yaron [2004]. Others consider even more

elaborate, thus harder to verify, models of the consumption growth process.

Gourio [2012] and Wachter [2012] consider time-varying disaster probabili-

ties. Gabaix [2012] assumes, in addition, that the consumption growth is a

“linearity-generating” process: keeping normally distributed innovations he

breaks the linearity of the growth rate process. Weitzman [2007] shows that

Bayesian learning can lead to a thick-tailed posterior distribution. Cecchetti

et al. [2000] assume that agents consider an oversimplified model of con-

sumption growth and for this reason they form wrong, pessimistic given the
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U.S. historical data, forecasts. Finally, Martin [2013] studies how different

cumulants of the consumption growth process affect asset returns.

Unlike the above studies, we estimate the distribution of the consumption

growth rate non-parametrically from over a century worth of the U.S. data.

It is still assumed to be a linear auto-regressive process, but no assumptions

are imposed on the distribution of the growth innovations. The estimated

non-parametric distribution has a minor mode in the left tail. That is, there

is evidence of large consumption contractions, as hypothesized by Rietz and

Barro, but not as large as they assume. This does not mean, however, that

agents did not expect larger decreases in consumption. But how far could

an agent’s expectations and the reality reasonably be? In the model that we

describe agents’ expectations differ consistently from the true distribution.

The discrepancy between the two is endogenously restricted by an entropy

constraint. The latter determines the set of plausible distributions, or be-

liefs, that an agent could assume. We then use the detection error probability

(DEP) concept advocated by Hansen and Sargent [2007] to guide the choice

of this set of reasonable beliefs. The resulting decision making model has a

simple representation – the “multiplier” preferences. This preference spec-

ification is part of a larger class of Kreps and Porteus [1978] and Epstein

and Zin [1989] utility functions. Because of this relation, the parameter that

governs the tightness of the entropy constraint can be also interpreted as risk

aversion to intratemporal fluctuations in wealth as in Tallarini [2000]. For

this reason our paper is closest in spirit to Barillas et al. [2009] who exploit

the same relation albeit assuming normally distributed consumption growth

rate innovations.

We show that if the asset returns are computed as a function of the

unobserved risk aversion parameter then deviating from the normality as-

sumption improves the model predictions substantially. The reason is that

with a left-skewed distribution of the consumption growth, agents behave in

a more cautious fashion. Thus, they choose to hold safe bonds even if its

return is low and demand a premium for holding risky equity. When we

return to the original interpretation and compute returns for a given level of

DEP, then the advantage of the non-parametric model disappears. This is

because deviations from the non-parametric distribution are easier to detect
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using statistical methods. That is, the entropy constraint becomes tighter

and this limits the amount of pessimism that can be reasonably built into an

agent’s behavior. And without pessimism asset return predictions are farther

from the reality.

The paper also develops several useful analytical expressions that relate

asset returns to the detection error probability. This can be done, though,

only for the case in which the growth innovations are normally distributed.

We describe how to perform the calculation for an arbitrary distribution

numerically. We conclude with a speculation of what could occur in settings

with time-varying pessimism.

2 Model

2.1 Static model

We first describe a static decision problem that motivates the objective func-

tion used in the dynamic model. Payoff V (z|d) depends on a decision maker’s

(DM) decision d and state z ∈ Z that is a realization of a random variable

Z. Let f(z) denote the DM’s subjective probability of outcome z ∈ Z. This

is his model of the world. However, the DM is concerned that f may not be

the true distribution. These concerns may arise because the data is finite,

inaccurate or incomplete.

The DM could test his distribution f . The best way to proceed is to use

the likelihood-ratio (LLR) test, which is the most powerful test. Using the

LLR test, the DM could build a set of distributions that are “reasonably”

similar. This set can be conveniently summarized using the Kullback-Liebler

divergence or entropy. Entropy of distribution f1 relative to f2 is defined as

follows:

E(f1, f2) =

∫
ln(f1(z)/f2(z))f1(z)dz.

The higher the entropy is, the more different f1 and f2 are. It is non-negative,

its minimal value is 0 and it is achieved when f1 = f2.

An agent who doubts his distribution f evaluates each action d according
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to the following criterion:

min
f̃

∫
V (z|d)f̃(z)dz (1a)

where the minimization is subject to the entropy constraint:∫
ln(f̃(z)/f(z))f̃(z)dz = E(f̃ , f) 6 η. (1b)

The entropy constraint determines the set of distributions that the agent is

willing to consider “similar.” The agent then acts as if the worst possible

distribution in this set were the true distribution.

To see where this takes us, we need to solve the above optimization prob-

lem. So, let θ−1 be the Lagrange multiplier on the entropy constraint. Then

the first-order optimality condition for f̃(z) is:

V (z|d)− θ−1(ln(f̃(z)/f(z)) + 1) = 0.

The above and the fact that f̃ must integrate to one imply:

f̃(z) = f(z)
exp(−θV (z|d))∫

exp(−θV (s|d))f(s)ds
.

The resulting objective is:∫
V (z|d)f̃(z)dz = ln

∫
exp(−θV (z|d))f(z)dz. (2)

The parameter θ measures an agent’s concern for model mis-specification, i.e.

the degree to which an agent doubts the distribution f . It can be obtained

from the entropy constraint. But because there is a one-to-one (positive)

relation between θ and η either of the two can be used.

The expression in (2) measures the DM’s welfare for any action d that

he could choose. We say that the DM has the multiplier preferences. Had

we left the objective as in (1) we would say that the DM has the constraint

preferences. The two differ because of the following singularity: if the payoffs

were constant, then the multiplier preferences would select f̃ = f , while any

f̃ in the “admissible” set yields the same utility as would be recognized by

the constraint preferences. Luckily, this never occurs in the setting that we

are about to describe.
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2.2 Dynamic model

We now describe the dynamic model environment. Time is indexed by t =

0, 1, 2, .... The state of the economy in period t is a first-order Markov process

gt ∈ R. The initial state of the economy g0 is known. We use gt to denote the

history of the state up to period t: g0, g1, ..., gt. The aggregate output in the

economy is denoted by Y (gt). Its evolution is summarized by the following

equation:

Y (gt+1)/Y (gt) = egt+1 , Y (g0) ≡ 1. (3)

We now make distributional assumptions about gt:

ln(gt)− µ = ρ(ln(gt−1)− µ) + εt, where εt ∼ iid F.

Distribution F is known, and in our baseline specification we assume that it

is a normal distribution.

The representative agent ranks different consumption plans {ct(gt)} using

the following recursive utility function:

V (gt) = ln(c(gt))− β

θ
lnE

[
exp(−θV (gt+1))|gt

]
, β ∈ (0, 1). (4)

One should recognize the multiplier preferences from (2) embedded in the

above. The parameter θ measures an agent’s concern for model misspecifica-

tion. As θ increases an agent doubts his distribution f more and contemplates

a larger set of alternative models. When θ → 0 a standard time separable

preference specification obtains: V (gt) = ln(c(gt)) + βE [V (gt+1)|gt]. That

is, an agent’s utility is a sum of the current period utility and the discounted

expected future utility. As mentioned above, the parameter θ can be also

interpreted as an agent’s risk aversion. If dispersion of the agent’s future con-

sumption increases, his utility decreases in proportion to θ. An interested

reader may consult Backus et al. [2004] for a detailed discussion of differ-

ent preference specifications, interpretation of their parameters, and relation

between them.

Financial markets are dynamically complete. That is after any history

gt the financial markets trade a continuum of securities that are contingent

on possible realizations of the growth rate tomorrow gt+1. Thus a security g′
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pays one unit of consumption only if the growth rate tomorrow is gt+1 = g′.

To illustrate, by purchasing all the securities g′ 6 E(gt+1) an agent insures

himself against the event that the growth rate is at or below the expected

value. Let the price of security g′ after history gt be denoted by Q(gt, g′).

Let a(gt, g′) be the quantity of security g′ that an agent purchases after

history gt. Then an agent must satisfy the following budget constraint:

c(gt) +

∫
g′
Q(gt, g′)a(gt, g′)dg′ = y(gt) + a(gt−1, gt). (5)

It states that the value of consumption and security purchases must equal

current income and the payoff from securities purchased in the previous pe-

riod.

Notice that apart from the exogenous income and the endogenous choices

of an agent the only variable that enters the budget constraint is his financial

wealth a(gt, g′). Thus, in what follows we replace state history with a pair

(a(gt), gt). These are the only two variables needed to make an informed

decision. The financial wealth determines what purchases are feasible. The

current state, not history because it is a first-order Markov process, is needed

to compute expected values. For this reason we use V (a(gt), gt) instead V (gt)

to denote the life-time utility. We only use this notation temporarily to

explain the optimization problem of an agent and to derive the equilibrium

prices.

Consider now the optimization problem of an agent with financial wealth

a(gt) when the current state of the economy is gt. An agent, subject to

the budget constraint (5), chooses current consumption and a portfolio of

securities to maximize his life time utility starting from gt:

V (a(gt), gt) =

max
c(gt),a(gt,g′),∀g′

{
ln(c(gt))− β

θ
ln

(∫
g′

exp(−θV (a(gt, g′), g′))dF (g′|gt)
)}

.

This is the Bellman equation associated with an agent’s optimization prob-

lem.

The first-order optimality conditions and the envelope condition for the

above optimization problem are provided in the appendix B. Combining the
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two we derive the equilibrium price Q(gt, g′):

Q(gt, g′) =
β

g′
f̃(g′|gt), (6)

where

f̃(g′|gt) ≡ exp{−θV (a(gt, g′), g′)}f(g′|gt)dg′∫
s′

exp{−θV (a(gt, s′), s′)}f(s′|gt)ds′
. (7)

Observe that f̃ ≡ dF̃ is a distribution function because
∫
g′
dF̃ (g′|gt) = 1.

It is referred to as distorted conditional distribution of the economy’s state

because it relocates probability mass (“distorts”) towards adverse outcomes.

The price Q(gt, g′) still depends on the unknown value function.

To compute V , first, impose that the representative agent’s consumption

must equal the total output produced: c(gt) = Y (gt),∀gt. Lemma 2 in

the appendix shows that function V can be factored into two components:

V (gt) = W (gt) + (1 − β)−1 lnY (gt−1). Then the distorted density can be

computed using W only:

F̃ (g′|gt) ≡
exp{−θV (gt, g′)}dF (g′|gt)∫
s′

exp{−θV (gt, s′)}dF (s′|gt)
=

exp{−θW (g′)}dF (g′|gt)∫
s′

exp{−θW (s′)}dF (s′|gt)
. (8)

Notice that the distribution F̃ is conditioned on gt not gt as the right-hand

side depends only on gt.

The value function W must satisfy the following recursive equation:

W (gt) = ln gt −
β

θ
lnE

[
exp(−θW (gt+1))|gt

]
. (9)

That the above equation has a unique solution can be shown as follows.

Let T (W )(x) ≡ ln(x) − (β/θ) lnE[exp(−θV (x)],∀x be the mapping defined

by the recursive equation. It is easy to show that it satisfies Blackwell’s

conditions, see [Stokey et al., 1989, p.54]. So, it defines a contraction mapping

on the space of continuous functions. If we restrict the support of the growth

rate, as has to be done in the numerical analysis, then we can narrow our

attention to the space of continuous and bounded functions. The latter is a

complete metric space and according to the contraction mapping theorem,

see [Stokey et al., 1989, p.50], there is a unique W satisfying the recursive

equation.
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According to lemma 3 in the appendix W must take the following form:

W (gt) = A+
ln gt

(1− β)(1− βρ)
. (10)

where A is a positive constant. The value of A is irrelevant for computation

of F̃ . Combining (8) and (10), and assuming that f is a normal density gives:

f̃(g′|gt) = f(g′|gt) · exp

{
−(1− β)(1− βρ)θε+ 0.5θ2σ2

[(1− β)(1− βρ)]2

}
, (11)

where ε = g′ − (1− ρ)µ− ρ ln gt. The representative agent believes that the

conditional distribution of g′ is:

f̃(g′|gt) = N

(
(1− ρ)

[
µ− θσ2

(1− β)(1− βρ)

]
+ ρ ln gt, σ

2

)
. (12)

Equivalently, the representative agent believes that growth innovations εt+1

are distributed according to N(− θσ2

(1−β)(1−βρ) , σ
2) while under the true dis-

tribution their mean is zero. In other words, he is pessimistic and makes

his decisions in a way that would deliver a satisfactory utility level even if

his pessimistic predictions turned out to be correct. This also means that

he would achieve a higher level of life-time utility had he not doubted the

consumption growth process. As was noted before, the degree of concern or

precaution is governed by θ. The larger the θ the more pessimistic are the

agent’s implied beliefs. Notice also that uncertainty is disabled when there

is no risk, i.e. when σ2 = 0. The pessimism is also stronger when the per-

sistence of the growth rate is higher, for then the long-run variance of the

growth rate is higher. When the agent is more patient, that is β is higher,

future utility becomes more important and this causes the agent to act more

cautiously/pessimistically. Finally, we point out that the agent distorts only

the mean, but not the variance. This is a special property of normally dis-

tributed risks. We will see later that allowing for non-normality results in a

more complicated distortion pattern.

2.3 Asset returns

Our interest is in two assets. The first, that we refer to as equity, is a claim to

the aggregate output in the economy. The second is the risk-free bond. The
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payoffs of these two assets can be mimicked by appropriate combinations of

the traded securities, and so their prices can be determined. The risk-free

bond pays one unit in every state tomorrow and its payoff can be replicated

by a portfolio consisting of one unit of each traded security. The bond price,

denoted by qb(gt), must equal the value of this portfolio:

qb(gt) =

∫
g′
Q(gt, g′) · 1 · dg′ = Ẽ[exp(− ln g′)]. (13)

An equity claim pays Y (gt+s) units of good in periods t + s,∀s > 1 and its

payoff can be replicated by a portfolio of qe(gt, g′) + Y (gt, g′) units of each

security g′. The value of this portfolio would allow buying an equity claim

and its dividends tomorrow. Its price is:

qe(gt) =

∫
g′
Q(gt, g′)(qe(gt, g′) + Y (gt, g′))dg′. (14)

The value of the equity claim trends together with the value of the aggregate

output. For this reason, we instead compute the price-dividend ratio ω(gt) ≡
qe(gt)/Y (gt) that is stationary:

w(gt) =

∫
g′
Q(gt, g′)(w(g′) + 1)g′dg′.w(gt) =

∫
g′
Q(gt, g′)(w(g′) + 1)g′dg′.

(15)

The price-dividend ratio depends only on the current state and not on the

history because gt is a first-order Markov process. For the current combina-

tion of the preference specification and the consumption growth process it is

in fact constant. The following constant price-dividend function solves the

above recursive equation:

ω(gt) = ω̄ ≡ β/(1− β).

That is, the price of an equity claim equals ω̄Y (gt) in any period t and

any history gt. Once the bond price and the equity price-dividend ratio are

determined, the expected returns can be determined as follows:

E[Rb] = E

[
1

qb(gt)

]
=

1

βẼ[1/g′]
, (16a)

E[Re] =
ω̄ + 1

ω̄
E[g′] =

E[g′]

β
. (16b)
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Notice that the true expected returns are computed, as they have to be

compared with the averages observed in the data. The latter were generated

from the true data-generating process f , not the pessimistic belief f̃ of the

agent. Also observe that the asset returns depend only on two expectations:

Ẽ[1/g′] and E[g′].

The assumption that the growth innovations are normally distributed

allows us to compute the returns analytically:

E[Rb] = β−1 exp

{
µ− σ2θ

(1− β)(1− βρ)
+ 0.5σ2

(
2ρ2 − 1

1− ρ2

)}
,

E[Re] = β−1 exp

{
µ+

0.5σ2

1− ρ2

}
.

Using the first-order Taylor series approximation, exp(x) − 1 ≈ x if x ≈ 0,

we get:

E[rb] = E[Rb − 1] ≈ −ln(β) + µ− σ2θ

(1− β)(1− βρ)
+ 0.5σ2

(
2ρ2 − 1

1− ρ2

)
,

E[re − rb] = E[Re −Rb] ≈ σ2 +
σ2θ

(1− β)(1− βρ)
.

The (net) return on the risk-free bond, E[rb], is decreasing and the risk

premium is increasing in θbecause a more risk-averse agent demands more of

the safe bond more and less of the risky equity claim.

2.4 Measuring θ: detection error probability

The asset return expressions involve θ, the parameter governing the agent’s

concern for uncertainty. Choice of θ can be guided by the statistical approach

to model selection. A detection-error probability (henceforth DEP) is the

probability that the likelihood ratio test fails to identify the true model.

With two alternatives at hand, f and f̃ , it is defined mathematically as

follows:

DEP = 0.5
[
prob(f is accepted |f̃ is true) + prob(f̃ is accepted |f is true)

]
.

It is advantageous to cast the asset returns in terms of DEP because we have

a better sense of “appropriate” values for DEP as opposed to θ; see Barillas
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et al. [2009]. In either case, the intuition is that a plausibly “rational” DM

should not consider easily (statistically) distinguishable alternative models.

If we use θ to measure the discrepancy between models, it means θ cannot

be too large, but this is vague. Alternatively, if DEP is used, it means DEP

cannot be too small. But we have a relatively better sense of appropriate

values for DEP: the threshold that is often employed in empirical analysis is

10%; we use it too.

Computation of the DEP when the two alternatives are normal distribu-

tions with different means is simple. Assume, without loss of generality, that

µ1 > µ2. Consider a sample {gt}Tt=1. Under model j the log-likelihood of

the data is lj = const− 0.5σ−2
∑T

t=1(et − µj)2/T where et = ln gt − ρ ln gt−1.

Thus, model 1 is accepted when in fact model 2 is correct if:

l1 − l2 > 0 ↔ 1

T

T∑
t=1

et > 0.5(µ1 + µ2).

This result is very intuitive: model j is selected if the observed average is

closer to mean µj. The average 1
T

∑T
t=2 et is normally distributed. So, the

probability of the above event is:

prob(l1 > l2|model 2 is true) = Φ(0.5(µ1 − µ2)
√
T/σ).

Similarly:

prob(l2 > l1|model 1 is true) = Φ(0.5(µ2 − µ1)
√
T/σ).

Exploiting symmetry of a normal distribution we get:

DEP = Φ(0.5|µ2 − µ1|
√
T/σ)

We state this result in the following lemma.

Lemma 1. The DEP for N(µ1, σ
2) and N(µ2, σ

2) and sample length T is

Φ(−0.5|µ1 − µ2|
√
T/σ).

When f is a normal density, then f̃ is also normal, and Lemma 1 can

be applied to the two densities. The corresponding means are µ1 = 0 and
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µ2 = − θσ2

(1−β)(1−βρ) . This yields the following expression for the DEP of the

growth rate process:

DEP = Φ(−0.5
√
Tθσ/(1− β)(1− βρ)). (17)

Equivalently, θσ/(1− β)(1− βρ)) = −2Φ−1(DEP)/
√
T : this relation allows

us to express asset returns in terms of EDP rather than θ:

E[rb] ≈ − ln(β) + µ+ Φ−1(DEP)
2σ√
T

+ 0.5σ2

(
2ρ2 − 1

1− ρ2

)
, (18a)

E[re − rb] ≈ σ2 − Φ−1(DEP)
2σ√
T
. (18b)

In what follows we use DEP = 0.10, that corresponds to an econometri-

cian making a classification mistake every tenth sample, implying that the

models are very similar. The discount factor β is set to 0.98. The results

for other values of the parameter β are not reported because it has only

a second order effect on the equity premium. We estimate the remaining

parameters using the data on the U.S. consumption growth data from 1883

to 2013: (ρ, σ) = (0.2654, 0.0378). The observed risk-free rate and the eq-

uity premium for this period are respectively 0.8% and 5.3%. The model, in

turn, predicts that the above should be 2.95% and 1.15%, respectively. That

is, the model over-estimates the risk-free rate of return and under-estimates

the risk premium. In the model without model uncertainty, that is, with

DEP = 0.50, these equal 3.95% and 0.15% respectively. We explore whether

the gap between the model and the data can be closed by discarding the

unrealistic normality assumption.

3 Non-parametric density

Rather than assuming that the distribution of ε is normal, we estimate it

from the data on annual per capita consumption growth rates in the U.S.

from 1889 to 2013. This non-parametrically estimated distribution is then

used as a true distribution in the calculations of the asset returns. Observe

that the “distorted” distribution also changes as it is a transformation of the

true distribution.
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Non-normality of the consumption growth innovations is apparent in the

data, see figure 1. A histogram of the consumption growth rate innovations ε

illustrates the much-discussed asymmetric pattern of left skewness and a thick

left tail. According to the Kolmogorov-Smirnov test the null hypothesis that

the innovations are generated from a normal distribution is strongly rejected.

The test rejects the null hypothesis at the 10 percent level, with a p-value of

0.692. But is this departure from normality economically important for asset

returns? Relaxing this distributional assumption necessitates a more complex

computational procedure, as we can no longer obtain analytical results. The

next subsection is devoted to describing this procedure in detail, and the

subsection that follows discusses the economic implications.

3.1 Computational Procedure

The computational procedure has three steps. The first step is to compute the

non-parametric density estimate and the implied cumulative density function

(cdf). The second step is to compute the value function and the distorted

distribution. The third step is to compute the relation between the DEP

and the risk-aversion parameter θ. The equilibrium price equations (13) and

(14) remain unchanged; what changes is how the distorted expectations are

computed. The price dividend ratio remains constant and equal to β/(1−β)

even with a non-normal distribution.

3.1.1 Estimation of the distribution of ε

Our method of choice is non-parametric kernel estimation, in particular the

Gaussian kernel estimation with the least-squares cross-validation to choose

the optimal bandwidth. A kernel estimator of a density function f is:

f̂(ε) =
1

nh

n∑
i=1

k

(
ei − ε
h

)
,

where k(·) is a kernel function, a standard normal density in our implemen-

tation. The bandwidth parameter h controls the degree of smoothing: the

larger h is, the smoother the estimate of f is. Using statistics terminology,

it governs the tradeoff between bias and variance of an estimate. Using a
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small value for a bandwidth parameter results in an estimate with small bias

but large variance, and vice versa for a large value. The statistical proce-

dure seeks to minimize the mean-squared error that is the sum of bias and

variance. The optimal bandwidth parameter balances the two components.

We use the least-squares cross-validation method for bandwidth selection as

described in Li and Racine [2006], section 1.3. This technique chooses the

bandwidth to minimize the integrated squared error of the estimate:

h∗ = arg min
h

∫ [
f̂(ε|h)− f(ε)

]2
dε = arg min

h

∫
f̂(ε|h)2dε−2

∫
f̂(ε)f(ε|h)dε.

In the above the objective can be replaced with the following sample analog:

h∗ = arg min
h

1

n2h

n∑
i=1

n∑
j=1

k

(
ei − ej
h

)
− 2

n(n− 1)h

n∑
i=1

∑
j 6=i

k

(
ej − ei
h

)
.

where k̄(v) =
∫
k(u)k(v−u)du is the twofold convolution kernel. In the case

of the Gaussian kernel, as it is assumed here, we have k̄(v) = exp(−v2/4)/
√

4π.

Applying this estimation method to the consumption growth data, we find

that the kernel estimate captures some significant features of non-normality:

thick tails and a mode in the left tail that can be seen in figure 1 panel A.

The mode in the left tail demonstrates the phenomenon that had given rise

to the disaster risk literature – a higher likelihood of lower tail realizations of

consumption growth, that can have significant implications for asset prices.

In contrast to the disaster risk literature however, we do not arbitrarily in-

troduce consumption growth “disaster” shocks, but rather “extract” them

directly from the data.

Henceforth we take f , the estimated density of the growth rate innova-

tions ε, to be the true underlying data-generating process.

Computation of the cumulative and the stationary densities

It is also required to compute the associated cumulative distribution func-

tion for ε that is needed to generate a random sample from the distribution

of ε. To compute the CDF, we construct a dense uniform grid {ε̄1, ε̄2, ..., ε̄n}
on the support of ε with an even number of sub-intervals and use (third-order
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Figure 1: Histogram and estimates of the density of consumption growth

innovations.

accurate) Simpson’s rule for numerical integration:

F (ε2i) =

∫ ε2i

−∞
f(v)dv ≈ d

3

[
f(ε̄0) + 4

i∑
j=1

f(ε̄2j−1) + 2
i−1∑
j=1

f(ε̄2j) + f(ε̄i)

]
,

where d ≡ ε̄2− ε̄1. The data {ε2i, F (ε2i)}n/2i=2 is then used to construct a spline

approximation to F . Simpson’s rule is also used to compute expectations in
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all subsequent equations. In our computation we set n = 1000 and ε̄1 =

−5σ, ε̄n = 5σ.

Unconditional asset returns must be computed using the stationary dis-

tribution of the consumption growth rate. In the case with normally dis-

tributed ε the stationary distribution is also normal with parameters that

can be derived analytically. With the non-parametric f this calculation has

to be performed numerically. The following recursive equation determines

the relation between period-t and period-t + 1 distributions of the growth

rate:

ϕt+1(y) =

∫
f(y − (1− ρ)µ− ρx)ϕt(x)dx. (19)

The stationary, or limiting, distribution is then computed iteratively starting

with an initial guess ϕ0 that is a spline approximation of σf((y− µ)/σ) and

updating our guess repeatedly using equation (19). The iteration is stopped

when the sup norm between the two consecutive updates is less than 10−9.

Computation of the value function and the distorted distribution

The normalized value function W must be computed numerically. As was

noted above the Bellman equation (4) defines a contraction mapping on a

complete metric space. According to the contraction mapping theorem, see

[Stokey et al., 1989, p.50], W can be computed as the limit of the following

recursive updating scheme:

W k+1(gt) = ln(gt)−
β

θ
ln
[
E
(
exp

{
−θW k(gt+1)

}
|gt
)]
.

Computation is started from W 0(gt) = 0 and continues until ‖W k+1−W k‖ <
10−6. For each k we use cubic splines with a 100 equally spaced knots to

interpolate W k on [mint gt − σ,maxt gt + σ].

Once W is known the implied distorted beliefs can be obtained using (7).

To illustrate how the distorted distribution changes when the underlying

DGP is non-normal, we plot the distorted density function for a parameter

pair (β, θ) = (0.98, 0.10) in figure 1 panel A. The agent’s pessimistic be-

liefs are no longer a simple shift in the mean of the underlying distribution.

Instead, they tend to place higher probability on the tail realizations of con-

sumption growth rates relative to the DGP, creating a larger mode in the
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left tail of the agent’s distorted distribution and a smaller central mode that

is now shifted leftward. Because the representative agent’s life-time utility is

lower when consumption growth is low, the agent distorts the left tail of the

distribution more than the right.

Computation of the DEP

To compute the DEP for the non-parametric distorted distribution, we

turn to simulations. We simulate a large number N of samples of length T

from distribution F and then compute the likelihood of each sample according

to F and F̃ . This can be done in two steps. First, generate a sample from

a uniform distribution, {ut}Tt=1, using the Mersenne twister pseudo-random

number generator. Second, transform each observation using the inverse of

the cdf: xt = G−1(ut). Let the number of instances in which the likelihood

computed using the distorted distribution is higher be MF̃ |F . We then reverse

the roles of F and F̃ and compute again the number of mistakenly classified

samples, MF |F̃ . The DEP is approximated by:

DEP ≈ 0.5(MF |F̃ +MF̃ |F )/N.

This computation has to be repeated for each pair of (β, θ) as F̃ depends on

these two parameters.

Figure 1 panel B plots the DEP as a function of θ for the parametric

and the non-parametric distribution estimates. The DEP is higher in the

case with the normal rather than the non-parametric distribution. In other

words, it is easier to distinguish the original and the distorted versions of

the non-parametric distribution than those of the normal. It is so because

in the case of the non-parametric distribution the distorted density shifts

away from the middle of the distribution that is relatively likely, and hence

“noticeable” to a statistician, under the true distribution. This means that

while the non-parametric distribution may have better predictions for the

asset returns, one has to consider lower values of the risk-aversion parameter

θ.
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Figure 2: Asset returns as functions of the risk-aversion parameter θ. The

black lines correspond to the non-parametric distribution of the growth in-

novations and the gray lines to the normal distribution. Vertical lines denote

values of θ that match the observed risk-free rate of 0.8%. Parameters:

β = 0.98.

3.2 Implications of non-normality for asset returns

The computed returns are plotted in figure 2. As θ increases, the risk free

rate decreases and the risk-premium increases faster than in the case with the
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normal growth innovations. If one commits to a given value of θ, then the

asset return predictions are substantially better under the non-parametric

distribution. But when the underlying distribution changes, so does the

mapping from θ to DEP: see figure 1 panel B.

When we plot the returns as functions of the DEP, the advantage of

the non-parametric distribution disappears. It is only with EDP less than

0.01 that the non-parametric distribution yields better predictions than the

normal distribution. The key to understanding this is that at low values of

θ, the asset returns depend very little on the shape of the distribution, as

can be seen in figure 2. Yet the normal distribution corresponds to a higher

DEP than the non-parametric distribution. Equivalently, if one keeps the

DEP level fixed, then the model with the normal distribution admits higher

values of the risk-aversion parameter θ: 0.318 vs 0.257. This overturns the

advantage of the non-parametric distribution.

4 Conclusion

To match the risk-free rate of return that is observed in the data, one needs

a value of the risk aversion parameter θ in [0.25,0.32]. These parameter

values are comfortably low. Admitting the non-parametric density improves

the model’s predictions significantly at all values of the risk-aversion in this

range.

Unfortunately, the microeconomic evidence about θ is scarce and incon-

clusive. Consequently, we use the fact that the model solution can be inter-

preted as the one in which the representative agent has pessimistic beliefs.

We then turn to statistical methods to shed light on the range of plausible

values of θ. Surprisingly, in the case with the non-parametric distribution,

the econometric tests would be more conclusive than with the normal dis-

tribution, yielding a smaller range of plausible beliefs and, therefore, θs.

When judged by the DEP, the model with the normal distribution performs

marginally better.

To conclude, the estimated non-parametric density shows potential of im-

proving asset-pricing predictions. But unfortunately the model is not rich

enough to exploit it. The most immediate extension would be remove the
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agent’s confidence in the estimated value of the growth rate persistence ρ.

When the agent has to distort both the distribution of the growth innova-

tions and the persistence parameter, how would he change the latter? We

conjecture that in this case the distorted distributions would become state-

dependent. When the current growth rate is low, the agent would be inclined

to think that this state may turn out to be more persistent than the evidence

indicates. When the current growth state is high, he would guard against

a possibility that the state is transitory. It would also be interesting to ac-

knowledge that some parts of the distribution are estimated more precisely

than others. That is to say one has to recognize that a model is estimated

and the testing is performed on a particular data sample. For some samples,

tail distortions may be easier to detect, but in other samples, these may be

body distortions.

References

David K. Backus, Bryan R. Routledge, and Stanley E. Zin. Exotic preferences

for macroeconomists. NBER Macroeconomics Annual, 19:319–414, 2004.

Ravi Bansal and Amir Yaron. Risks for the long run: A potential resolution

of asset pricing puzzles. Journal of Finance, 59:1481–1509, 2004.

Francisco Barillas, Lars P. Hansen, and Thomas J. Sargent. Doubts or vari-

ability? Journal of Economic Theory, 144:2388–2418, 2009.

Robert J. Barro. Rare disasters and asset markets in the twentieth century.

Quarterly Journal of Economics, 121(3):832–866, 2006.

Stephen G. Cecchetti, Pok-sang Lam, and Nelson C. Mark. Asset pricing

with distorted beliefs: Are equity returns too good to be true? American

Economic Review, 90(4):787–805, 2000.

Larry Epstein and Stanley Zin. Substitution, risk aversion and the tempo-

ral behavior of consumption and asset returns: A theoretical framewor.

Econometrica, 57:937–969, 1989.

21



Xavier Gabaix. An exactly solved framework for ten puzzles in macro-finance.

Quarterly Journal of Economics, 127:645700, 2012.

Francois Gourio. Disaster risk and business cycles. American Economic

Review, 102(6):2734–2766, 2012.

Lars P. Hansen and Thomas J. Sargent. Robustness. Princeton University

Press, 2007.

Lars P. Hansen, John C. Heaton, and Nan Li. Consumption strikes back?

measuring long-run risk. Journal of Political Economy, 116(2):260–302,

2008.

David M. Kreps and Evan L. Porteus. Temporal resolution of uncertainty

and dynamic choice theory. Econometrica, 46:185–200, 1978.

Qi Li and Jeffrey S. Racine. Nonparametric econometrics: Theory and prac-

tice. Princeton University Press, 2006.

Ian W. Martin. Consumption-based asset pricing with higher cumulants.

Review of Economic Studies, 80(2):745–773, 2013.

Rajnish Mehra and Edward C. Prescott. The equity premium: A puzzle.

Journal of Monetary Economics, 15(2):145–161, 1988.

Thomas A. Rietz. The equity risk premium: A solution. Journal of Monetary

Economics, 22(3):1117–1131, 1988.

Nancy Stokey, Robert E. Lucas, and Edward C. Prescott. Recursive methods

in economic dynamics. Harvard University Press, 1989.

Thomas D. Tallarini. Risk-sensitive real business cycles. Journal of Monetary

Economics, 45(3):507–532, 2000.

Jessica Wachter. Can time-varying risk of rare disasters explain aggregate

stock market volatility? Journal of Finance, 68(3):987–1035, 2012.

Martin L. Weitzman. Subjective expectations and asset-return puzzles.

American Economic Review, 97(4):1102–1130, 2007.

22



A Proofs

Lemma 2. If gt is a first-order Markov process then:

V (gt) = W (gt) +
y(gt−1)

1− β
, ∀t, gt.

Proof. Let y(gt) ≡ lnY (gt)/(1 − β) and W (gt) ≡ V (gt) − y(gt−1)/(1 − β).

First, we derive the recursive equation for W (gt). Starting from the Bellman

equation (4) we get:

W (gt) = lnY (gt)− β

θ
ln
[
E
[

exp(−θ(V (gt+1)− y(gt) + y(gt))|gt]
]]
− y(gt−1)

= lnY (gt)− β

θ
ln
[
E
[

exp(−θ(V (gt+1)− y(gt))|gt
]]
− y(gt−1)

= ln gt −
β

θ
ln
[
E
[

exp(−θW (gt+1))|gt
]]
.

The last line uses the fact that gt is a first-order Markov process; so, it is

sufficient to condition only on gt. Finally, observe that the right hand side is

a function of gt not gt. This implies that W (gt) must depend only on gt as

conjectured.

Lemma 3. If gt is a linear auto-regressive process then W is affine:

W (gt) = A+B ln gt,

A = (1− β)−1β[(1− ρ)µ− ln[E[exp(−θ2B2ε)]]/θ],

B = 1/[(1− β)(1− βρ)].

When the growth innovations are normally distributed then A ≡ β[(1−ρ)µ−
0.5σ2θ/(1− β)(1− βρ)]/(1− β)2/(1− βρ).

Proof. This can be verified using equation (4).

B Optimality conditions

Let λ(gt) be the Lagrange multiplier on the history-gt budget constraint (5).

The first-order optimality conditions for the representative agent’s optimiza-
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tion problem are:

c(gt) : 0 = 1/c(gt)− λ(gt),

a(gt, g′) : 0 = βVa(a(gt, g′), g′)
exp(−θV (a(gt, g′), g′))

E[exp(−θV (a(gt, g′), g′))|gt]
− λ(gt)Q(gt, g′).

The envelope condition is:

Va(a(gt), gt) = λ(gt).

The envelope condition implies that Va(a(gt, g′), g′) = λ(gt+1). Combining

these relations with the first-order conditions yields (6).
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