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Abstract

We propose a sieve maximum likelihood estimation (MLE) procedure for a broad class of
semiparametric multivariate distributions. A joint distribution in this class is characterized by
a parametric copula function evaluated at nonparametric marginal distributions. This class of
distributions has gained popularity in diverse fields due to a) its flexibility in separately modeling
the dependence structure and the marginal behaviors of a multivariate random variable, and
b) its circumvention of the “curse of dimensionality” associated with purely nonparametric
multivariate distributions. We show that the plug-in sieve MLEs of all smooth functionals,
including the finite dimensional copula parameters and the unknown marginal distributions, are
semiparametrically efficient; and that their asymptotic variances can be estimated consistently.
Moreover, prior restrictions on the marginal distributions can be easily incorporated into the
sieve MLE procedure to achieve further efficiency gains. Two such cases are studied in the
paper: (i) the marginal distributions are equal but otherwise unspecified, and (ii) some but not
all marginal distributions are parametric. Monte Carlo studies indicate that the sieve MLEs
perform well in finite samples, especially so when prior information on the marginal distributions
is incorporated.
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1 Introduction

Let {Zi ≡ (X1i, ..., Xmi)′}n
i=1 be a random sample from the distribution Ho(x1, . . . , xm) of Z ≡

(X1, ..., Xm)′ in X1× ...×Xm ⊆ Rm, m ≥ 2. Assume that Ho is absolutely continuous with respect

to the Lebesgue measure on Rm and let ho(x1, ..., xm) be the probability density function (pdf) of

Z. Clearly estimation of Ho or ho is one of the most important statistical problems. Due to the

well-known “curse of dimensionality,” it is undesirable to estimate Ho or ho fully nonparametrically

in high dimensions. This motivates the development of many semiparametric models for Ho.

One class of semiparametric multivariate distributions has gained popularity in diverse fields

due to its flexibility in separately modeling the dependence structure and the marginal behaviors of

a multivariate random variable. To introduce this class, let Foj denote the true unknown marginal

cdf of Xj , j = 1, ..., m. The characterization theorem of Sklar (1959) implies that there exists

a unique copula function Co() such that Ho(X1, ..., Xm) ≡ Co(Fo1(X1), ..., Fom(Xm)). Suppose

that the functional form of the copula Co(u1, ..., um) is known apart from a finite dimensional

parameter θo, i.e., for any (u1, . . . , um) ∈ [0, 1]m, we have Co(u1, ..., um) = C(u1, ..., um; θo), where

{C(u1, ..., um; θ) : θ ∈ Θ} is a parametric family of copula functions.1 Then the multivariate

distribution Ho is of a semiparametric form:

Ho(X1, ..., Xm) = C(Fo1(X1), ..., Fom(Xm); θo) (1)

with unknown finite dimensional parameter θo and infinite dimensional parameters Foj , j =

1, . . . , m. Let foj , j = 1, ..., m, and c(u1, ..., um; θo) denote the pdfs associated with Foj , j = 1, ..., m,

and C(u1, ..., um; θo) respectively. Then for any (x1, ..., xm) ∈ X1× ...×Xm, the pdf ho of Ho given

by (1) has the representation: ho(x1, ..., xm) = c(Fo1(x1), ..., Fom(xm); θo)
∏m

j=1 foj(xj). We refer to

the class of multivariate distributions of the form (1) as the class of copula-based semiparametric

multivariate distributions.

This class of copula-based models achieves the aim of dimension reduction; as for any m,

the joint density ho(x1, . . . , xm) depends on nonparametric functions of only one dimension. In

addition, the parameters in models of this class are easy to interpret: the marginal distributions Foj ,

j = 1, . . . ,m, capture the marginal behavior of the univariate random variables Xj , j = 1, . . . , m;

and the finite dimensional parameter θo, or equivalently the parametric copula C(u1, . . . , um, θo),

characterizes the dependence structure between X1, . . . , Xm that is invariant to any increasing

transformations of the univariate random variables Xj , j = 1, . . . ,m. Given the existence of a large

number of parametric copulas and univariate distributions, this class of semiparametric multivariate

distributions is very flexible to model jointly any type of dependence with any types of marginal

behaviors, and has proven to be useful in diverse fields. Specific applications include those in finance
1Commonly used parametric copulas include the Gaussian copula, Student’s t copula, Clayton, Frank and Gumbel

copulas; see Joe (1997) and Nelsen (1999) for properties of many existing parametric copulas.
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and insurance (e.g., Frees and Valdez (1998) and Embrechts, et al. (2002)); in survival analysis

(e.g. Joe (1997), Nelsen (1999) and Oakes (1989)); in econometrics (e.g. Lee (1983), Heckman and

Honore (1989), Granger, et al. (2003) and Patton (2004)), to name only a few.

To estimate the multivariate distribution Ho(x1, . . . , xm) ≡ C(Fo1(x1), . . . , Fom(xm); θo), one

has to estimate both the copula parameter θo and the marginal cdfs Foj , j = 1, . . . , m. In current

literature, the most popular estimator of Foj is the empirical cdf Fnj(xj) = 1
n

∑n
i=1 1{Xji ≤ xj}

for j = 1, . . . , m. And the most widely used estimator of θo is the two-step estimator θ̃n proposed

by Oakes (1994) and Genest, et al. (1995):

θ̃n = arg max
θ∈Θ

[
n∑

i=1

log c(F̃n1(X1i), ..., F̃nm(Xmi); θ)

]
, (2)

where F̃nj(xj) = 1
n+1

∑n
i=1 1{Xji ≤ xj} is the rescaled empirical cdf estimator of Foj , j = 1, ..., m.

Genest, et al. (1995) establish the root-n consistency and asymptotic normality of θ̃n.2

In many applications, efficient estimation of the entire multivariate distribution Ho(x1, . . . , xm) ≡
C(Fo1(x1), . . . , Fom(xm); θo) is desirable, which requires efficient estimation of both the marginal

cdfs Foj , j = 1, . . . , m and the copula dependence parameter θo. Except when X1, . . . , Xm are in-

dependent, it is clear that the empirical cdfs Fnj , j = 1, . . . , m are generally inefficient. Intuitively

one could obtain more efficient estimates of Foj , j = 1, . . . , m by utilizing the dependence informa-

tion contained in the parametric copula. Except for a few special cases, the two-step estimator of

the copula parameter θo is inefficient in general (see Genest and Werker, 2002). This is because

the two-step estimator θ̃n does not solve the efficient score equation for θ in general. Currently

there are only two known special cases where the two-step estimator is asymptotically efficient; it

is efficient at independence (Genest, et al., 1995), and it is efficient for the Gaussian copula para-

meter when marginal cdfs are unknown (Klaassen and Wellner, 1997). Unfortunately even for the

bivariate Gaussian copula model with unknown margins, there is presently no efficient estimates

of univariate marginal cdfs; see Klaassen and Wellner (1997). For semiparametric bivariate sur-

vival Clayton copula models, Maguluri (1993) provides some efficiency score calculation for θo and

conjectures that his proposed estimator might be efficient. For general bivariate semiparametric

copula models, Bickel, et al. (1993, chapter 4.7) present some efficiency bound characterizations

for θo, but no efficient estimators. For a bivariate copula model with one known marginal cdf and

one unknown marginal cdf, Bickel, et al. (1993, chapter 6.7) provide some efficiency bound calcula-

tions for the unknown margin, but again no efficient estimators. To the best of our knowledge (see

Klaassen and Wellner (1997), and Genest and Werker (2002)), there does not exist any published
2Shih and Louis (1995) independently propose the two-step estimator for i.i.d. data with random censoring. The

two-step estimator and its large sample properties have been extended to time series setting in Chen and Fan (2005a,
b). There are many earlier papers that propose specific estimators of the copula parameter θo for specific parametric
copula models; see e.g., Clayton (1978), Clayton and Cuzick (1985), Oakes (1982, 1986) and Genest (1987).
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work on efficient estimation of θo and Foj , j = 1, . . . ,m for general multivariate semiparametric

copula models.

In this paper, we propose a general sieve maximum likelihood estimation (MLE) procedure for

all the unknown parameters in a semiparametric multivariate copula model (1). This procedure

approximates the infinite-dimensional unknown marginal densities foj , j = 1, ..., m by linear com-

binations of finite-dimensional known basis functions with increasing complexity (sieves), and then

maximizes the joint likelihood with respect to the copula parameter and the sieve parameters of

the approximating marginal densities. Because our sieve MLEs of the marginal cdfs utilize all the

parametric dependence information, and our sieve MLE of the copula parameter effectively solves

an approximate efficient score equation for θ (where the approximation error becomes negligible

as sample size grows large enough), intuition suggests that these estimators should be efficient.

By applying the general theory of Shen (1997) we can show that our plug-in sieve MLEs of all

smooth functionals, including the unknown marginal cdfs and the copula parameter, are indeed

semiparametrically efficient. As our sieve MLE procedure involves approximating and estimating

one-dimensional unknown functions (marginal densities) only, it avoids the “curse of dimensional-

ity” and is simple to compute. In addition, it can be easily adapted to estimating semiparametric

multivariate copula models with prior restrictions on the marginal cdfs to produce more efficient es-

timates. Examples of such restrictions include equal but unknown marginal cdfs, known parametric

forms of some (but not all) marginal cdfs. Results from an extensive simulation study for several

copula families and marginal cdfs in both bivariate and tri-variate models confirm the efficacy of

the sieve MLE.

Although we establish that the sieve MLEs of copula parameter and marginal cdfs achieve their

efficiency bounds, there is no closed-form expressions for the efficiency bounds of copula parameter

and marginal cdfs in general semiparametric copula models (except for a few special bivariate copula

models such as the bivariate Clayton copula model with one known margin). As a result, direct

estimation of the asymptotic variances of sieve MLEs using the analytic expressions of the efficiency

bounds is only possible for a few special copula models. Nevertheless, for general semiparametric

multivariate copula models with or without prior information on marginal cdfs, we are able to

provide simple consistent estimates of the asymptotic variances of the sieve MLEs of the copula

parameter and of the unknown marginal cdfs. This greatly broadens the applicability of our sieve

MLEs. Using the closed-form expressions in the special model of bivariate Clayton copula with

one known margin, we demonstrate via simulation that our consistent estimators of the asymptotic

variances of the sieve MLEs for both the copula parameter and the unknown marginals perform

extremely well.

The rest of this paper is organized as follows. Section 2 introduces the sieve MLEs of the

copula parameter and the unknown marginal cdfs in models with or without restrictions on the
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marginal cdfs. In Section 3, we show that for semiparametric multivariate copula models with

unknown marginal cdfs, the plug-in sieve MLEs of all smooth functionals are root-n normal and

semiparametrically efficient. These results are then employed to deliver the root-n asymptotic

normality and efficiency of the sieve MLEs of the copula parameter and the marginal cdfs. We

also provide simple consistent estimators of the asymptotic variances of these sieve MLEs. Section

4 extends results in Section 3 to models with equal but unknown margins and models with some

parametric margins. Section 5 provides simulation results on finite sample performance of the sieve

MLEs for various models of different combinations of marginals and copulas that exhibit a wide

range of dependence structures. It also reveals some important features of the relative behaviors

of the sieve MLE of the copula parameter to the two-step estimator, and of the sieve MLEs of

the marginal cdfs to the empirical cdfs. Appendix A contains the proofs. Appendix B presents

asymptotic variances of the modified two-step estimator of θo under restrictions on the marginals.

2 The Sieve ML Estimators

We first introduce suitable sieve spaces for approximating an unknown univariate density function

of certain smoothness, based on which we will then present our sieve MLEs.

2.1 Sieve Spaces for Approximating a Univariate Density

Let the true density function foj belong to Fj for j = 1, . . . , m. Recall that a space Fnj is called a

sieve space for Fj if for any gj ∈ Fj , there exists an element Πngj ∈ Fnj such that d(gj ,Πngj) → 0

as n →∞ where d is a metric on Fj ; see e.g. Grenander (1981) and Geman and Hwang (1982).

There exist many sieves for approximating a univariate probability density function. In this

paper, we will focus on using linear sieves to directly approximate a square root density:

Fnj =



fKnj (x) =




Knj∑

k=1

akAk(x)




2

,

∫
fKnj (x)dx = 1



 , Knj →∞,

Knj

n
→ 0, (3)

where {Ak(·) : k ≥ 1} consists of known basis functions, and {ak : k ≥ 1} is the collection of

unknown sieve coefficients.

Before presenting some concrete examples of known sieve basis functions {Ak(·) : k ≥ 1}, we

first recall a popular smoothness function class used in the nonparametric estimation literature;

see, e.g. Stone (1982) and Robinson (1988). Suppose the support Xj (of the true foj) is either

a compact interval (say [0, 1]) or the whole real line R. A real-valued function h on Xj is said

to be r-smooth if it is J times continuously differentiable on Xj and its J-th derivative satisfies a

Hölder condition with exponent γ ≡ r − J ∈ (0, 1] (i.e., there is a positive number K such that

|DJh(x)−DJh(y)| ≤ K|x− y|γ for all x, y ∈ Xj). We denote Λr(Xj) as the class of all real-valued

functions on Xj which are r-smooth; it is called a Hölder space.
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The appropriate sieve bases for approximating functions in Λr(Xj) depend on the support Xj .

If the support is bounded such as Xj = [0, 1], then functions in Λr(Xj) with r > 1/2 can be well

approximated by the spline sieve Spl(s,Kn) with s > [r] (the largest integer part of r). The spline

sieve Spl(s,Kn) is a linear space of dimension (Kn + s + 1) consisting of spline functions of degree

s with almost equally spaced knots t1, . . . , tKn on [0, 1]. Let t0, t1, . . . , tKn , tKn+1 be real numbers

with 0 = t0 < t1 < · · · < tKn < tKn+1 = 1 and max0≤k≤Kn(tk+1−tk) ≤ const.min0≤k≤Kn(tk+1−tk).

Partition [0, 1] into Kn+1 subintervals Ik = [tk, tk+1), k = 0, . . . , Kn−1, and IKn = [tKn , tKn+1]. A

function on [0, 1] is a spline of degree s with knots t1, . . . , tKn if it is: (i) a polynomial of degree s or

less on each interval Ik, k = 0, . . . , Kn; and (ii) (s−1)-times continuously differentiable on [0, 1]. See

Schumaker (1981) for details on univariate splines. Other sieve spaces for approximating functions

in Λr(Xj) with r > 1/2 and Xj = [0, 1] include the polynomial sieve Pol(Kn) = {∑Kn
k=0 akx

k, x ∈
[0, 1] : ak ∈ R}, the trigonometric sieve TriPol(Kn) = {a0 +

∑Kn
k=1[ak cos(kπx) + bk sin(kπx)], x ∈

[0, 1] : ak, bk ∈ R} and the cosine series CosPol(Kn) = {a0 +
∑Kn

k=1 ak cos(kπx), x ∈ [0, 1] : ak ∈
R}.

If the true unknown marginal densities are such that
√

foj ∈ Λrj (Xj), Xj bounded interval,

then we can let Fnj in (3) be

Fnj =
{

f(x) = [g(x)]2 :
∫

[g(x)]2 dx = 1,
g ∈ Spl([rj ] + 1,Kn) or Pol(Kn) or TriPol(Kn) or CosPol(Kn)

}
. (4)

There are also sieve bases that can be used to approximate densities with unbounded support:

Xj = R. For example, (i) if the density foj has close to exponential thin tails, we can use the

Hermite polynomial sieve to approximate it:

Fnj =

{
fKnj (x) = ε0+{PKnj

k=1 ak(
x−ς0

σ
)k}2

σ exp{− (x−ς0)2

2σ2 } :
ε0 > 0, σ > 0, ς0, ak ∈ R,

∫
fKnj (x)dx = 1

}
(5)

as in Gallant and Nychka (1987); (ii) if the density foj has polynomial fat tails, we can use the

spline wavelet sieve to approximate it:

Fnj =



fKnj (x) =




Knj∑

k=0

∑

l∈Kn

akl2k/2Bγ(2kx− l)




2

,

∫
fKnj (x)dx = 1



 (6)

where Bγ(·) denotes the cardinal B-spline of order γ:

Bγ(y) =
1

(γ − 1)!

γ∑

i=0

(−1)i

(
γ
i

)
[max (0, y − i)]γ−1 . (7)

See Chui (1992, Chapter 4) for the approximation property of this sieve.

2.2 Sieve MLEs

To simplify presentation, regardless there is any prior information on marginal distributions, we

let `(α,Zi) denote the contribution of the i-th observation to the log-likelihood function and α̂n

denote the sieve MLE for all the cases being considered in the paper.
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First we consider the completely unrestricted case. Let α = (θ′, f1, ..., fm)′ and denote αo =

(θ′o, fo1, ..., fom)′ ∈ Θ×∏m
j=1Fj = A as the true but unknown parameter value. Let

`(α, Zi) = log{c(F1(X1i), ..., Fm(Xmi); θ)
m∏

j=1

fj(Xji)}

in which Fj(Xji) =
∫
Xj

1(x ≤ Xji)fj(x)dx, j = 1, ..., m, and α̂n = (θ̂′n, f̂n1, ..., f̂nm)′ ∈ Θ ×
∏m

j=1Fnj = An denote the sieve MLE:

α̂n = argmaxα∈An

n∑

i=1

`(α,Zi) (8)

where the sieve space Fnj could be (4) if Xj is a bounded interval, and could be (5) or (6) if Xj = R.

The plug-in sieve MLE of the marginal distribution Foj(·) is given by F̂nj(xj) =
∫

1(y ≤ xj)f̂nj(y)dy,

j = 1, ..., m.

Remark 1: The sieve MLE optimization problem can be rewritten as an unconstrained optimiza-

tion problem:

max
θ,a1n,...,amn

n∑

i=1

{log c(F1(X1i; a1n), ..., Fm(Xmi; amn); θ) +
m∑

j=1

[log fj(Xji; ajn) + λjnPen(ajn)]},

where for j = 1, ...,m, fj(Xji; ajn) is a known (up to unknown sieve coefficients ajn) sieve approx-

imation to the unknown true foj , and Fj(Xji; ajn) is the corresponding sieve approximation to

the unknown true Foj . The smoothness penalization term Pen(ajn) typically corresponds to the

L2-norm of either the first derivative or the second order derivative of f
1/2
j (·; ajn), and λjn’s are pe-

nalization factors. In our simulation study, we chose the penalization factors via cross-validation.

In principle, we could use any model selection methodology such as cross-validation, covariance

penalty (see, e.g., Shen and Ye (2002), Shen, et al. (2004)), among many others, to choose the

number of terms Knj in the sieve approximation.

Note that once the unknown marginal density functions are approximated by the appropriate

sieves, the sieve MLEs are obtained by maximization over a finite dimensional parameter space.

The properties of the resulting sieve MLEs depend on the approximation properties of the sieves.

Prior restrictions on the marginal distributions can be easily taken into account in the choice of

the sieves, leading to further efficiency gain in the resulting sieve MLEs. We now illustrate this for

two cases.

The first is the case where the marginal distributions are the same, but unspecified oth-

erwise. Let Foj = Fo (foj = fo) and Xj = X for all j = 1, ..., m. Let α = (θ′, f)′ and

let αo = (θ′o, fo)′ ∈ Θ × F1 = A be the true but unknown parameter value. Let `(α, Zi) =

log{c(F (X1i), ..., F (Xmi); θ)
∏m

j=1 f(Xji)} in which F (Xji) =
∫
X 1(x ≤ Xji)f(x)dx, j = 1, ..., m.

Then the sieve MLE α̂n = (θ̂′n, f̂n)′ ∈ Θ× Fn1 = An is given by (8). This procedure can be easily

extended to the case where some but not all marginal distributions are equal.
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Bickel, et al. (1993) consider a semiparametric bivariate copula model in which one marginal cdf

is completely known and the other marginal is left unspecified. The sieve ML estimation procedure

we just introduced can be easily modified to exploit this information. To be more specific, let

the marginal distribution Fo1 be of parametric form, i.e., Fo1(x1) = Fo1(x1, βo) for some βo ∈ B.

The marginal distributions Fo2, . . . , Fom are unspecified. Let α = (θ′, β′, f2, ..., fm)′ and denote

αo = (θ′o, β′o, fo2, ..., fom)′ ∈ Θ × B × ∏m
j=2Fj = A as the true but unknown parameter value.

Let `(α,Zi) = log
{

c(Fo1(X1i, β), ..., Fom(Xmi); θ)fo1(X1i, β)
∏m

j=2 fj(Xji)
}

in which Fj(Xji) =
∫
Xj

1(x ≤ Xji)fj(x)dx, j = 2, ..., m. Then the sieve MLE denoted as α̂n = (θ̂′n, β̂′n, f̂n2, ..., f̂nm)′ ∈
Θ×B×∏m

j=2Fnj = An is again given by (8). When Fo1(·) is completely known as in Bickel, et al.

(1993), we simply take B = {βo}.

3 Asymptotic Normality and Efficiency of Smooth Functionals

Let ρ : A → R be a smooth functional and ρ(α̂n) be the plug-in sieve MLE of ρ(αo), where α̂n and

αo are defined in Section 2. In this section, we consider models with unrestricted marginals and

apply the general theory of Shen (1997) to establish the asymptotic normality and semiparametric

efficiency of the plug-in sieve MLE ρ(α̂n) of ρ(αo).

3.1 Asymptotic Normality and Efficiency of ρ(α̂n)

Let Eo(·) denote the expectation under the true parameter αo. Let Uo ≡ (Uo1, ..., Uom)′ ≡
(Fo1(X1), ..., Fom(Xm))′ and u = (u1, ..., um)′ be an arbitrary value in [0, 1]m. In addition, let

c(Fo1(X1), ..., Fom(Xm); θo) = c(Uo, θo) = c(αo).

Assumption 1. (1) θo ∈ int(Θ), Θ a compact subset of Rdθ ; (2) for j = 1, ..., m,
√

foj ∈ Λrj (Xj),

rj > 1/2; (3) αo = (θ′o, fo1, ..., fom)′ is the unique maximizer of Eo[`(α, Zi)] over A = Θ×∏m
j=1Fj

with Fj = {fj = g2 : g ∈ Λrj (Xj),
∫

[g(x)]2dx = 1}.
Assumption 2. the following second order partial derivatives are all well-defined in the neighbor-

hood of αo:
∂2 log c(u,θ)

∂θ2 , ∂2 log c(u,θ)
∂uj∂θ , ∂2 log c(u,θ)

∂uj∂uk
for j, k = 1, ..., m.

Denote V as the linear span of A−{αo}. Under Assumption 2, for any v = (v′θ, v1, ..., vm)′ ∈ V,

we have that `(αo + tv, Z) is continuously differentiable in small t ∈ [0, 1]. Define the directional

derivative of `(α, Z) at the direction v ∈ V (evaluated at αo) as:

d`(αo + tv, Z)
dt

|t=0 ≡ ∂`(αo, Z)
∂α′

[v] =
∂`(αo, Z)

∂θ′
[vθ] +

m∑

j=1

∂`(αo, Z)
∂fj

[vj ]

=
∂ log c(αo)

∂θ′
vθ +

m∑

j=1

{
∂ log c(αo)

∂uj

∫
1(x ≤ Xj)vj(x)dx +

vj(Xj)
foj(Xj)

}
.
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Define the Fisher inner product on the space V as

〈v, ṽ〉 ≡ Eo

[(
∂`(αo, Z)

∂α′
[v]

)(
∂`(αo, Z)

∂α′
[ṽ]

)]
, (9)

and the Fisher norm for v ∈ V as ||v||2 = 〈v, v〉. Let V be the closed linear span of V under the

Fisher norm. Then (V, || · ||) is a Hilbert space. It is easy to see that V = {v = (v′θ, v1, ..., vm)′ ∈
Rdθ ×∏m

j=1 Vj : ||v|| < ∞} with

Vj =

{
vj : Xj → R : Eo

(
vj(Xj)
foj(Xj)

)
= 0, Eo

(
vj(Xj)
foj(Xj)

)2

< ∞
}

. (10)

It is known that the asymptotic properties of ρ(α̂n) depend on the smoothness of the functional

ρ and the rate of convergence of α̂n. For any v ∈ V, we denote

∂ρ(αo)
∂α′

[v] ≡ lim
t→0

[(ρ(αo + tv)− ρ(αo))/t]

whenever the right hand-side limit is well defined and assume:

Assumption 3. (1) for any v ∈ V, ρ(αo + tv) is continuously differentiable in t ∈ [0, 1] near t = 0,

and

‖∂ρ(αo)
∂α′

‖ ≡ sup
v∈V:||v||>0

∣∣∣∂ρ(αo)
∂α′ [v]

∣∣∣
||v|| < ∞;

(2) there exist constants c > 0, ω > 0, and a small ε > 0 such that for any v ∈ V with ||v|| ≤ ε, we

have ∣∣∣∣ρ(αo + v)− ρ(αo)− ∂ρ(αo)
∂α′

[v]
∣∣∣∣ ≤ c||v||ω.

Under Assumption 3, by the Riesz representation theorem, there exists υ∗ ∈ V such that

〈υ∗, v〉 =
∂ρ(αo)

∂α′
[v] for all v ∈ V (11)

and

||υ∗||2 = ‖∂ρ(αo)
∂α′

‖2 = sup
v∈V:||v||>0

∣∣∣∂ρ(αo)
∂α′ [v]

∣∣∣
2

||v||2 < ∞. (12)

We make the following assumption on the rate of convergence of α̂n:

Assumption 4. (1) ||α̂n−αo|| = OP (δn) for a decreasing sequence δn satisfying (δn)ω = o(n−1/2);

(2) there exists Πnυ∗ ∈ An − {αo} such that δn × ||Πnυ∗ − υ∗|| = o(n−1/2).

Theorem 1. Suppose that Assumptions 1-4 and 5-6 stated in Appendix A hold. Then
√

n(ρ(α̂n)−
ρ(αo)) ⇒ N

(
0, ‖∂ρ(αo)

∂α′ ‖2
)

and ρ(α̂n) is semiparametrically efficient.

Discussion of assumptions. Assumptions 1-2 are standard ones. Assumption 3 is essentially

the definition of a smooth functional. Assumption 4(1) is a requirement on the convergence rate
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of the sieve MLEs of unknown marginal densities f̂nj , j = 1, ..., m. There exist many results on

convergence rates of general sieve estimates of a marginal density; see e.g., Shen and Wong (1994),

Wong and Shen (1995), and Van der Geer (2000). There are also many results on particular sieve

density estimates; see e.g. Stone (1990) for spline sieve, Barron and Sheu (1991) for polynomial,

trigonometric and spline sieves, Chen and White (1999) for neural network sieve, Coppejans and

Gallant (2002) for Hermite polynomial sieve. Assumption 4(2) requires that the Riesz representer

has a little bit of smoothness. Although Assumptions 3 and 4(2) are stated in terms of data

Zi = (X1i, ..., Xmi)′, and the Fisher norm ||v|| on the perturbation space V, it is often easier to

verify these assumptions in terms of transformed variables. Let

L0
2([0, 1]) ≡

{
e : [0, 1] →R :

∫ 1

0
e(v)dv = 0,

∫ 1

0
[e(v)]2dv < ∞

}
.

By change of variables, for any vj ∈ Vj there is a unique function bj ∈ L0
2([0, 1]) with bj(uj) =

vj(F
−1
oj (uj))

foj(F
−1
oj (uj))

, and vice versa. Therefore we can always rewrite ∂`(αo,Z)
∂α′ [v] as follows:

∂`(αo, Z)
∂α′

[v] =
∂`(αo, Uo)

∂α′
[(v′θ, b1, ..., bm)′]

=
∂ log c(αo)

∂θ′
vθ +

m∑

j=1

{
∂ log c(αo)

∂uj

∫ Uoj

0
bj(y)dy + bj(Uoj)

}

and

||v||2 = Eo

[(
∂`(αo, Uo)

∂α′
[(v′θ, b1, ..., bm)′]

)2
]

= Eo





∂ log c(αo)

∂θ′
vθ +

m∑

j=1

{
∂ log c(αo)

∂uj

∫ Uoj

0
bj(y)dy + bj(Uoj)

}


2


Define

B =



b = (v′θ, b1, ..., bm)′ ∈ Rdθ ×

m∏

j=1

L0
2([0, 1]) : ||b||2 ≡ Eo

[(
∂`(αo, Uo)

∂α′
[b]

)2
]

< ∞


 .

Then there is an one-to-one onto mapping between the two Hilbert spaces (B, || · ||) and (V, || · ||).
Now it is easy to see that the Riesz representer υ∗ = (υ∗′θ , υ∗1, ..., υ

∗
m)′ ∈ V is uniquely determined

by b∗ = (υ∗′θ , b∗1, ..., b
∗
m)′ ∈ B (and vise versa) via the relation:

υ∗j (xj) = b∗j (Foj(xj))foj(xj) for all xj ∈ Xj , for j = 1, ...,m.

Then Assumption 4(2) can be replaced by

Assumption 4’(2): there exists Πnb∗ = (υ∗′θ , Πn1b
∗
1, ...,Πnmb∗m)′ ∈ Rdθ ×∏m

j=1 Bnj such that

||Πnb∗ − b∗||2 = Eo




m∑

j=1

{
∂ log c(αo)

∂uj

∫ Uoj

0
{Πnb∗j − b∗j}(y)dy + {Πnb∗j − b∗j}(Uoj)

}


2

= o

(
1

nδ2
n

)
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where for j = 1, ..., m, Bnj is a sieve for L0
2([0, 1]).

Although many sieves including Spl(1,Kn), Pol(Kn) and TriPol(Kn) can be used as Bnj for

the space L0
2([0, 1]), due to its simple structure we recommend the following one:

Bnj = {e(u) =
Knj∑

k=1

ak

√
2 cos(kπu), u ∈ [0, 1],

Knj∑

k=1

a2
k < ∞}.

3.2
√

n−Normality and Efficiency of θ̂n

We take ρ(α) = λ′θ for any arbitrarily fixed λ ∈ Rdθ with 0 < |λ| < ∞. It satisfies Assumption

3(2) with ∂ρ(αo)
∂α′ [v] = λ′vθ and ω = ∞. Assumption 3(1) is equivalent to finding a Riesz representer

υ∗ ∈ V satisfying (13) and (14):

λ′(θ − θo) = 〈α− αo, υ
∗〉 for any α− αo ∈ V (13)

and

‖∂ρ(αo)
∂α′

‖2 = ||υ∗||2 = 〈υ∗, υ∗〉 = sup
v 6=0,v∈V

|λ′vθ|2
||v||2 < ∞. (14)

Notice that

sup
v 6=0,v∈V

|λ′vθ|2
||v||2 = sup

b6=0,b∈B





|λ′vθ|2

Eo

[(
∂ log c(αo)

∂θ′ vθ +
∑m

j=1

{
∂ log c(αo)

∂uj

∫ Uoj

0 bj(y)dy + bj(Uoj)
})2

]





= λ′I∗(θo)−1λ = λ′
(
Eo[SθoS ′θo

]
)−1

λ

where

S ′θo
=

∂ log c(Uo, θo)
∂θ′

−
m∑

j=1

[
∂ log c(Uo, θo)

∂uj

∫ Uoj

0
g∗j (u)du + g∗j (Uoj)], (15)

and g∗j = (g∗j,1, ..., g
∗
j,dθ

) ∈ ∏dθ
k=1 L0

2([0, 1]), j = 1, ..., m solves the following infinite-dimensional

optimization problems for k = 1, ..., dθ,

inf
g1,k,...,gm,k∈L0

2([0,1])
Eo






∂ log c(Uo, θo)

∂θk
−

m∑

j=1

[
∂ log c(Uo, θo)

∂uj

∫ Uoj

0
gj,k(v)dv + gj,k(Uoj)]




2
 .

Therefore b∗ = (υ∗′θ , b∗1, ..., b
∗
m)′ with υ∗θ = I∗(θo)−1λ and b∗j (uj) = −g∗j (uj)× υ∗θ , and

υ∗ = (Idθ
,−g∗1(Fo1(x1))fo1(x1), ...,−g∗m(Fom(xm))fom(xm))× I∗(θo)−1λ.

Hence (14) is satisfied if and only if I∗(θo) = Eo[SθoS ′θo
] is non-singular, which in turn is satisfied

under the following assumption:

Assumption 3’: (1) ∂ log c(Uo,θo)
∂θ , ∂ log c(Uo,θo)

∂uj
, j = 1, ...,m have finite second moments;

10



(2) I(θo) ≡ Eo[
∂ log c(Uo,θo)

∂θ
∂ log c(Uo,θo)

∂θ′ ] is finite and positive definite;

(3)
∫ ∂c(u,θo)

∂uj
du−j = ∂

∂uj

∫
c(u, θo)du−j = 0 for (j,−j) = (1, ..., m) with j 6= −j;

(4)
∫ ∂2c(u,θo)

∂uj∂θ du−j = ∂2

∂uj∂θ

∫
c(u, θo)du−j = 0 for (j,−j) = (1, ..., m) with j 6= −j;

(5) there exists a constant K such that

max
j=1,...,m

sup
0<uj<1

E

[(
uj(1− uj)

∂ log c(Uo, θo)
∂uj

)2

| Uoj = uj

]
≤ K.

We can now apply Theorem 1 to obtain the following result:

Proposition 1. Suppose that Assumptions 1 - 2, 3’, 4 - 6 hold. Then
√

n(θ̂n−θo) ⇒ N (
0, I∗(θo)−1

)

and θ̂n is semiparametrically efficient.

To make inferences on θo using the sieve MLE θ̂n, we need to estimate its asymptotic variance

or I∗(θo). If there is a closed-form expression of I∗(θo) then it can be consistently estimated by the

direct plug-in estimator I∗(θ̂n). Unfortunately, only recently Klaassen and Wellner (1997) derive a

closed-form expression of I∗(θo) for the bivariate Gaussian copula model with unknown margins.

In general there is no closed-form solutions of I∗(θo) for multivariate copula models with unknown

margins, hence direct plug-in estimation of I∗(θo) is difficult. We propose a sieve estimator of

I∗(θo) based on its characterization in (15). Let Ûi = (Û1i, ..., Ûmi)′ = (F̂n1(X1i), ..., F̂nm(Xmi))′

for i = 1, ..., n. Let An be some sieve space such as:

An = {(e1, ..., edθ
) : ej(·) ∈ Bn, j = 1, ..., dθ}, (16)

Bn = {e(u) =
Knθ∑

k=1

ak

√
2 cos(kπu), u ∈ [0, 1],

Knθ∑

k=1

a2
k < ∞}, (17)

where Knθ →∞, (Knθ)dθ/n → 0. We can now compute

σ̂2
θ = min

gj∈An,
j=1,...,m

1
n

n∑

i=1





(
∂ log c(bUi,bθn)

∂θ′ −∑m
j=1[

∂ log c(bUi,bθn)
∂uj

∫ bUji

0 gj(v)dv + gj(Ûji)]
)′
×(

∂ log c(bUi,bθn)
∂θ′ −∑m

j=1[
∂ log c(bUi,bθn)

∂uj

∫ bUji

0 gj(v)dv + gj(Ûji)]
)



 .

Proposition 2. Under the assumptions in Proposition 1, we have: σ̂2
θ = I∗(θo) + op(1).

3.3 Sieve MLE of Foj

For j = 1, ..., m, we consider the estimation of ρ(αo) = Foj(xj) for some fixed xj ∈ Xj by the

plug-in sieve MLE: ρ(α̂) = F̂nj(xj) =
∫

1(y ≤ xj)f̂nj(y)dy, where f̂nj is the sieve MLE from (8).

Clearly ∂ρ(αo)
∂α′ [v] =

∫
Xj

1(y ≤ xj)vj(y)dy for any v = (v′θ, v1, ..., vm)′ ∈ V. It is easy to see that

ω = ∞ in Assumptions 3 and 4, and

‖∂ρ(αo)
∂α′

‖2 = sup
v∈V:||v||>0

∣∣∣
∫
Xj

1(y ≤ xj)vj(y)dy
∣∣∣
2

||v||2 < ∞.
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Hence the representer υ∗ ∈ V should satisfy (18) and (19):

〈υ∗, v〉 =
∂ρ(αo)

∂α′
[v] = Eo

(
1(Xj ≤ xj)

vj(Xj)
foj(Xj)

)
for all v ∈ V (18)

‖∂ρ(αo)
∂α′

‖2 = ||υ∗||2 = ||b∗||2 = sup
b∈B:||b||>0

|Eo (1(Uoj ≤ Foj(xj))bj(Uoj))|2
||b||2 . (19)

Proposition 3. Let υ∗ ∈ V solve (18) and (19). Suppose that Assumptions 1 - 2 and 4 - 6 hold.

Then for any fixed xj ∈ Xj and for j = 1, ..., m,
√

n(F̂nj(xj)−Foj(xj)) ⇒ N (
0, ||υ∗||2). Moreover,

F̂nj is semiparametrically efficient.

Again for general semiparametric copula models including the Gaussian copula with unknown

margins, there are currently no closed-form solutions for the asymptotic variance ||υ∗||2. Neverthe-

less, we can again consistently estimate ||υ∗||2 by the sieve method. Let

σ̂2
Fj

(xj) = max
vθ 6=0,bk∈Bn,

k=1,...,m

∣∣∣ 1
n

∑n
i=1 1{Ûji ≤ F̂nj(xj)}bj(Ûji)

∣∣∣
2

1
n

∑n
i=1

[
∂ log c(bUi,bθ)

∂θ′ vθ +
∑m

k=1[
∂ log c(bUi,bθ)

∂uk

∫ bUki

0 bk(u)du + bk(Ûki)]
]2 ,

where Ûi = (F̂n1(X1i), ..., F̂nm(Xmi))′, and Bn is given in (17).

Proposition 4. Under assumptions in Proposition 3, we have for any fixed xj ∈ Xj and j = 1, ..., m,

σ̂2
Fj

(xj) = ||υ∗||2 + op(1).

Remark 2: In the special case of the independence copula (c(u1, ..., um, θ) = 1), we could solve

(18) and (19) explicitly. We note that for the independence copula,

〈ṽ, v〉 =
m∑

k=1

Eo

(
ṽk(Xk)
fok(Xk)

vk(Xk)
fok(Xk)

)
for all ṽ, v ∈ V.

Thus (18) and (19) are satisfied with υ∗j (Xj) = {1(Xj ≤ xj)− Eo[1(Xj ≤ xj)]}foj(Xj) and υ∗k = 0

for all k 6= j. Hence

||υ∗||2 = Eo (1(Xj ≤ xj) {1(Xj ≤ xj)−Eo[1(Xj ≤ xj)]}) = Foj(xj){1− Foj(xj)}.

Thus for models with the independence copula, the plug-in sieve MLE of Foj satisfies
√

n
(
F̂nj(xj)− Foj(xj)

)
⇒ N (0, Foj(xj){1− Foj(xj)}) ,

where its asymptotic variance coincides with that of the standard empirical cdf estimate Fnj(xj) =
1
n

∑n
i=1 1{Xji ≤ xj} of Foj . For models with parametric copula functions that are not independent,

we have ||υ∗||2 ≤ Foj(xj){1− Foj(xj)}.

4 Sieve MLE with Restrictions on Marginals

In this section, we present the asymptotic normality and efficiency results for sieve MLEs of θo and

Foj under restrictions on marginal distributions considered in Section 2.
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4.1 Equal but Unknown Margins

Now the Fisher norm becomes ||v||2 = Eo{∂`(αo,Z)
∂α′ [v]}2 with

∂`(αo, Z)
∂α′

[v] =
∂ log c(Uo, θo)

∂θ′
vθ +

m∑

j=1

{
∂ log c(Uo, θo)

∂uj

∫ Xj

v1(x)dx +
v1(Xj)
fo(Xj)

}
,

Uo = (Fo(X1), ..., Fo(Xm))′ and v ∈ V = {v = (v′θ, v1)′ ∈ Rdθ ×V1 : ||v|| < ∞} with V1 given in

(10).

Proposition 5. Suppose Assumptions 1-2, 3’, 4-6 hold and foj = fo for j = 1, ..., m. Then

(i) θ̂n is semiparametrically efficient and
√

n(θ̂n − θo) ⇒ N (
0, I∗(θo)−1

)
where I∗(θo) =

inf
g∈Qdθ

k=1 L0
2([0,1])

Eo





(
∂ log c(Uo,θo)

∂θ′ −∑m
j=1[

∂ log c(Uo,θo)
∂uj

∫ Uoj

0 g(u)du + g(Uoj)]
)′
×(

∂ log c(Uo,θo)
∂θ′ −∑m

j=1[
∂ log c(Uo,θo)

∂uj

∫ Uoj

0 g(u)du + g(Uoj)]
)



 ;

(ii) for any fixed x ∈ X , F̂n(x) =
∫

1(y ≤ x)f̂n(y)dy is semiparametrically efficient and
√

n(F̂n(x)− Fo(x)) ⇒ N (
0, ||υ∗||2) where ||υ∗||2 = ||b∗||2 =

sup
vθ 6=0,

b∈L0
2([0,1])

|Eo{1(Uo1 ≤ Fo(x))b(Uo1)}|2

Eo

[(
∂ log c(Uo,θo)

∂θ′ vθ +
∑m

k=1

{
∂ log c(Uo,θo)

∂uk

∫ Uok

0 b(u)du + b(Uok)
})2

] .

Comparing the asymptotic variances of the estimators of θo and Foj in Proposition 5 with those

in Propositions 1 and 3, we see that exploiting the restriction of equal marginals in general leads

to more efficient estimators of the copula parameter θo and the marginal distributions.

Proposition 6. Under conditions in Proposition 5, we have:

(i) σ̂2
θ = I∗(θo) + op(1), where

σ̂2
θ = min

g∈An

1
n

n∑

i=1





(
∂ log c(bUi,bθn)

∂θ′ −∑m
j=1[

∂ log c(bUi,bθn)
∂uj

∫ bUji

0 g(u)du + g(Ûji)]
)′
×(

∂ log c(bUi,bθn)
∂θ′ −∑m

j=1[
∂ log c(bUi,bθn)

∂uj

∫ bUji

0 g(u)du + g(Ûji)]
)



 ;

(ii) σ̂2
F (x) = ||υ∗||2 + op(1), where

σ̂2
F (x) = max

vθ 6=0,b∈Bn

∣∣∣ 1
n

∑n
i=1 1{Û1i ≤ F̂n(x)}b(Û1i)

∣∣∣
2

1
n

∑n
i=1

[
∂ log c(bUi,bθn)

∂θ′ vθ +
∑m

k=1[
∂ log c(bUi,bθn)

∂uk

∫ bUki

0 b(u)du + b(Ûki)]
]2 ,

in which Ûi = (F̂n(X1i), ..., F̂n(Xmi))′, An is the sieve space (16), and Bn is the sieve space (17).
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4.2 Models with a Parametric Margin

In this case, the Fisher norm becomes ||v||2 = Eo{∂`(αo,Z)
∂α′ [v]}2 with

∂`(αo, Z)
∂α′

[v] =
∂ log c(Uo, θo)

∂θ′
vθ +

∂`(αo, Z)
∂β′

vβ +
m∑

j=2

{
∂ log c(Uo, θo)

∂uj

∫ Xj

vj(x)dx +
vj(Xj)
foj(Xj)

}
,

∂`(αo, Z)
∂β′

vβ =
[
∂ log c(Uo, θo)

∂u1

∫ X1 ∂fo1(x, βo)
∂β′

dx +
1

fo1(X1, βo)
∂fo1(X1, βo)

∂β′

]
vβ,

where Uo = (Fo1(X1, βo), Fo2(X2), ..., Fom(Xm))′ and v ∈ V = {v = (v′θ, v
′
β, v2, . . . , vm)′ ∈ Rdθ ×

Rdβ ×Πm
j=2Vj : ||v|| < ∞} with Vj given in (10).

Proposition 7. Suppose that Assumptions 1-2, 3’, 4-6 hold, Fo1(·) = Fo1(·, βo) for unknown

βo ∈ int(B) and E
[

∂ log fo1(X1,βo)
∂β

∂ log fo1(X1,βo)
∂β′

]
is positive definite. Then

(i) θ̂n is semiparametrically efficient and
√

n(θ̂n− θo) ⇒ N (
0, I∗(θo)−1

)
where I∗(θo) = Eo[SθoS ′θo

]

with S ′θo
=

(
Sθo1 , ...,Sθodθ

)
and for k = 1, ..., dθ,

Sθok
=

∂ log c(Uo, θo)
∂θk

− ∂`(αo, Z)
∂β′

a∗k −
m∑

j=2

[
∂ log c(Uo, θo)

∂uj

∫ Uoj

0
g∗j,k(u)du + g∗j,k(Uoj)]

solves the following optimization problem:

inf
ak∈Rdβ ,ak 6=0,
gj,k∈L0

2([0,1])

Eo






∂ log c(Uo, θo)

∂θk
− ∂`(αo, Z)

∂β′
ak −

m∑

j=2

[
∂ log c(Uo, θo)

∂uj

∫ Uoj

0
gj,k(u)du + gj,k(Uoj)]




2
 ;

(ii) for any fixed x ∈ X and for j = 2, . . . , m, F̂nj(x) =
∫

1(y ≤ x)f̂nj(y)dy is semiparametrically

efficient and
√

n(F̂nj(x)− Foj(x)) ⇒ N (
0, ||υ∗||2) where ||υ∗||2 = ||b∗||2 =

sup
vθ 6=0,vβ 6=0,

bk∈L0
2([0,1])

|Eo{1(Uoj ≤ Foj(x))bj(Uoj)}|2

Eo

[(
∂ log c(Uo,θo)

∂θ′ vθ + ∂`(αo,Z)
∂β′ vβ +

∑m
k=2

{
∂ log c(Uo,θo)

∂uk

∫ Uok

0 bk(u)du + bk(Uok)
})2

] .

Proposition 8. Under conditions in Proposition 7, we have:

(i) σ̂2
θ = I∗(θo) + op(1), where σ̂2

θ =

min
a6=0,

gj∈An

1
n

n∑

i=1





(
∂ log c(bUi,bθn)

∂θ′ − ∂`(bα,Zi)
∂β′ a−∑m

j=2[
∂ log c(bUi,bθn)

∂uj

∫ bUji

0 gj(v)dv + gj(Ûji)]
)′

(
∂ log c(bUi,bθn)

∂θ′ − ∂`(bα,Zi)
∂β′ a−∑m

j=2[
∂ log c(bUi,bθn)

∂uj

∫ bUji

0 gj(v)dv + gj(Ûji)]
)



 ;

(ii) σ̂2
Fj

(xj) = ||υ∗||2 + op(1), where σ̂2
Fj

(xj) =

max
vθ 6=0,vβ 6=0,

bk∈Bn

1
n

∣∣∣∑n
i=1 1{Ûji ≤ F̂nj(xj)}bj(Ûji)

∣∣∣
2

∑n
i=1

[
∂ log c(bUi,bθ)

∂θ′ vθ + ∂`(bα,Zi)
∂β′ vβ +

∑m
k=2[

∂ log c(bUi,bθ)
∂uk

∫ bUki

0 bk(u)du + bk(Ûki)]
]2 ,
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where Ûi = (Fo1(X1i; β̂), ..., F̂nm(Xmi))′.

Remark 3: Suppose further that the margin Fo1(·) = Fo1(·, βo) is completely known. Let

α̂n = (θ̂n, βo, f̂n2, . . . , f̂nm) be the corresponding sieve MLE of αo = (θo, βo, fo2, ..., fom). Then

the conclusions of Proposition 7 still hold after we drop the term “∂`(αo,Z)
∂β′ vβ” from the definition

of the Fisher norm and from the calculation of asymptotic variances. Moreover, the asymptotic

variance of
√

n(θ̂n − θo) can be consistently estimated by {σ̂2
θ}−1, with

σ̂2
θ = min

gj∈An,
j=2,...,m

1
n

n∑

i=1





(
∂ log c(bUi,bθn)

∂θ′ −∑m
j=2[

∂ log c(bUi,bθn)
∂uj

∫ bUji

0 gj(v)dv + gj(Ûji)]
)′
×(

∂ log c(bUi,bθn)
∂θ′ −∑m

j=2[
∂ log c(bUi,bθn)

∂uj

∫ bUji

0 gj(v)dv + gj(Ûji)]
)



 ,

and the asymptotic variance of
√

n(F̂nj(x)−Foj(x)) can be consistently estimated by σ̂2
Fj

(xj), with

σ̂2
Fj

(xj) = max
vθ 6=0,bk∈Bn,

k=2,...,m

∣∣∣ 1
n

∑n
i=1 1{Ûji ≤ F̂nj(xj)}bj(Ûji)

∣∣∣
2

1
n

∑n
i=1

[
∂ log c(bUi,bθ)

∂θ′ vθ +
∑m

k=2[
∂ log c(bUi,bθ)

∂uk

∫ bUki

0 bk(u)du + bk(Ûki)]
]2 ,

where Ûi = (Fo1(X1i), F̂n2(X2i), ..., F̂nm(Xmi))′, An is the sieve space (16), and Bn is the sieve

space (17).

5 Simulation Study

To investigate the finite sample performance of the proposed sieve MLEs of the copula parameter

and the marginals, we conduct an extensive simulation study that covers three families of marginals,

four families of bivariate copulas and two families of tri-variate copulas. These copulas exhibit a

wide range of dependence structures. For comparison purposes, we include the ideal MLE of the

copula parameter in which all the margins are assumed to be known, the two-step estimator of

the copula parameter, and the empirical cdfs of the marginals. We also investigate the relative

performance of sieve MLEs of the copula parameter and the marginals under two kinds of prior

information on marginals: (a) one margin is known or parametric, (b) all margins are equal but

are unspecified. As a fair comparison, we include the modified two-step estimator of the copula

parameter in which the first step marginals are estimated under prior information on marginals.

All the results reported in this section are based on 500 Monte Carlo replications of estimates using

a random sample {Zi ≡ (X1i, ..., Xmi)′}n
i=1 with n = 400.

5.1 Implementation of Sieve MLEs

We have tried both B-spline sieve and Hermite polynomial sieve to approximate square root of a

marginal density in our simulation studies and have found out they perform similarly. To save space

we only report the simulation results for the sieve MLEs using B-spline basis. Let {Bγ(x− k)}Knj

k=1
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be the γ-th order B-spline basis. Then the marginal density function foj can be approximated by

fj(x; aj) =

(∑Knj

k=1 ajkBγ(x− k)
)2

∫ (∑Knj

k=1 ajkBγ(x− k)
)2

dx
,

where j = 1, . . . , m. Throughout the simulation study, we use the 3rd order B-splines, i.e., γ = 3.

We approximate the density foj on the support [min(Xji)− sXj ,max(Xji) + sXj ], where sXj is the

sample standard deviation of {Xji}n
i=1. The number of sieve coefficients is dictated by the support of

the density. Let b1j = max(z ≤ min(Xji)−sXj : z is integer), and b2j = min(z ≥ max(Xji)+sXj : z

is integer). Then for B-splines of order γ, we need Knj = b2j − b1j + 1 − γ sieve coefficients to

‘cover’ the interval [b1j , b2j ]. To evaluate the integral that appears in the denominator we use a

grid of equidistant points on [b1j , b2j ]. The results reported in this paper correspond to grid size

0.01, but we also tried value 0.005, which gives very similar results. In each case, the sieve MLE

is computed as that in Remark 1 using Pen(fj) = ‖(√fj)′‖2
2 penalty.3 We have tried penalization

factors of values 0.01, 0.001, 0.0001 and have found the results are similar. The results reported

in this section use 0.001 as the penalization factor for all the bivariate models and 0.01 for all the

tri-variate models.

5.2 Bivariate Copula Models

We consider the estimation of semiparametric bivariate copula models for four different copulas:

the Clayton copula, the Gumbel copula, the Gaussian copula, a mixture of Gaussian and Clayton

copulas. The Clayton copula of dimension m is of the form:

CC(u1, . . . , um; θ) = (
m∑

j=1

u−θ
j − (m− 1))−1/θ, θ ≥ 0.

The Gumbel copula of dimension m is given by

CG(u1, . . . , um; θ) = exp(−[
m∑

j=1

(− ln uj)θ]1/θ), θ ≥ 1.

The bivariate Gaussian copula is simply Φθ(Φ−1(u1), Φ−1(u2)), where Φ(·) is the standard univariate

normal distribution, Φθ(u1, u2) is the bivariate normal distribution with means zero, variances 1,

and correlation coefficient θ (|θ| ≤ 1). The mixture of Gaussian and Clayton copulas we use is

CM (u1, u2; θ) = 0.9Φθ(Φ−1(u1), Φ−1(u2)) + 0.1CC(u1, u2; 0.5), |θ| ≤ 1, (20)

These four copulas are chosen to represent four different dependence structures. The bivariate

Clayton copula exhibits positive dependence (i.e., its Kendall’s τ is always positive), lower tail

3For the bivariate cases, we also used the penalty ‖(f1/2
j )

′′‖22 and found the results are similar for both penalties.
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dependence but no upper tail dependence. As θ increases, both the overall dependence as measured

by Kendall’s τ and the lower tail dependence of the Clayton copula model increase; it approaches

perfect positive dependence when θ → ∞ and independence when θ → 0. The bivariate Gumbel

copula has positive dependence, upper tail dependence but no lower tail dependence. As θ increases,

both the overall dependence and the upper tail dependence of the Gumbel copula increase; it

approaches perfect positive dependence when θ → ∞ and reduces to the independence copula

when θ = 1. The bivariate Gaussian copula has symmetric positive and negative dependence but

no tail dependence. As |θ| increases its overall dependence increases; it reduces to the independence

copula when θ = 0. The mixture of Gaussian and Clayton copulas (20) exhibits asymmetric

positive and negative dependence; it has lower tail dependence because of the Clayton copula. As

|θ| increases, its overall dependence as measured by Kendall’s τ increases, but its tail dependence

remains unchanged.

To sum up, the bivariate semiparametric copula models examined in this section can be ex-

pressed as C(Fo1(x1), Fo2(x2); θo), where the copula C(u1, u2; θ) is either the Clayton, Gumbel,

Gaussian, or the mixture of Gaussian and Clayton copulas described above. The first marginal

Fo1 is either U [0, 1], N(0, 1) or t[5], and the second marginal Fo2 is either t[3], t[5] or a mixture of

normals mn ≡ 0.4N(−1, 1) + 0.6N(2, 1). For the unknown marginal distribution Fo2 we estimate

its value at the 1/3 percentile (q1) and 2/3 percentile (q2) of the true distribution. For the unknown

copula parameter θo we estimate its value corresponding to Kendall’s τ from small to big. For each

estimator of θo and Fo2, we compute its Monte Carlo sample mean (Mean), sample variance (Var),

sample mean squared error (MSE), the Monte Carlo sample mean of the consistent estimator of

its asymptotic variance (ÂV ar), and the simulated theoretical asymptotic variance (AVar). The

theoretical asymptotic variance of the two-step estimator and its consistent estimator are computed

using the expressions in Genest, et al. (1995). The theoretical asymptotic variance of the modified

two-step estimator and its consistent estimator are provided in Appendix B. The consistent esti-

mators of the asymptotic variances for the sieve MLEs are computed according to those described

in Sections 3 and 4, with 12 cosine series terms when Kendall’s |τ | ≤ 0.5, and 24 cosine series terms

when Kendall’s |τ | > 0.5. The simulated theoretical asymptotic variances of the sieve MLEs are

computed in the same way as those for the estimators of asymptotic variances, except that we use

the true parameter values (θo, Fo1, Fo2) and a huge simulated sample (n = 100, 000). Throughout

this section, the reported values for the Var, MSE, ÂV ar and AVar for the marginal distribution

are all multiplied by 103.

Through this simulation study, we aim to shed light on i) the relative performance of sieve

MLE of the copula parameter to the two-step estimator; ii) the relative performance of the sieve

MLE of the marginal cdfs to the empirical cdfs; iii) the performance of the consistent estimators of

the asymptotic variances for the sieve MLEs of the copula parameter and the marginals; and iv)
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the accuracy of the simulated theoretical asymptotic variances of the sieve MLEs. For the lack of

space, we present more detailed results for the Clayton copula and the Gaussian copula, but only

brief results for the Gumbel copula and the mixture copula.

5.2.1 Bivariate copula models with one known or parametric margin

Tables 1, 2, 4, 5 and 6 present simulation results for different bivariate copula models when the

first margin Fo1 is completely known and the second margin Fo2 is unknown. Without loss

of generality Fo1 = U [0, 1], and the true unknown marginal distribution Fo2 is either mn ≡
0.4N(−1, 1) + 0.6N(2, 1) or t[3], where the former is asymmetric and bimodal and the latter

has very fat tails. The modified two-step estimator of θo under a known Fo1(x) maximizes
∑n

i=1 log{c(Fo1(X1i), F̃n2(X2i), θ)}.
Tables 1 and 2 report results for the estimation of the Clayton copula parameter θo and the

unknown margin Fo2, where the true unknown Fo2 is either mn or t[3]. We have also tried Fo2 being

Beta, t[5] and t[10], and the results are virtually the same as the ones reported in Tables 1 and 2

for unknown Fo2 = t[3]. These results illustrate that the estimation of the copula parameter and

the unknown margins is not sensitive to the particular functional forms of the unknown margins.

Because of these findings and the lack of space, in Tables 3 - 6 we only report results corresponding

to the unknown margin Fo2 being mn.

Table 3 reports simulation results for the bivariate Clayton copula when the first margin Fo1

is parametric and taken to be normal N(0, βo) with true but unknown βo = 1.4 The modified

two-step estimator of θo in this case maximizes
∑n

i=1 log{c(Fo1(X1i; β̃), F̃n2(X2i), θ)} where β̃ is the

parametric MLE for the parametric margin Fo1(x, βo). As expected, the sample MSE, the estimated

asymptotic variance and the simulated theoretical asymptotic variance of all the estimators of θo

are slightly larger than the corresponding values in Table 1 due to the additional parameter in the

parametric margin Fo1 = N(0, βo) that we have to estimate. However, we are happy to find out

that the difference is small, and all the qualitative patterns in Tables 1 and 2 for one known margin

case carry over to this one parametric margin case.

For the bivariate Clayton copula model with a known margin Fo1, Bickel, et al. (1993) provide

closed-form expressions for the semiparametric efficient variance bounds for estimating the copula

parameter θo and the unknown margin Fo2. These are respectively the true asymptotic variances

of our sieve MLE of θo and of Fo2, which are reported in Tables 1 and 2 as AvarT. For the bivariate

Gaussian copula model with a known margin Fo1, Bickel, et al. (1993) only derive the closed-form

expression for the semiparametric efficient variance bound for estimating the copula parameter θo

but not the unknown margin Fo2. Their result allows us to report the true asymptotic variance

of our sieve MLE of θo (AVarT) in Table 5. Results in Tables 1, 2 and 5 indicate that, regardless
4We have also tried parametric margin Fo1 = t[βo] with true but unknown βo = 5 design, and the simulation

results are very close to the ones reported in Table 3.
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Table 1: Clayton copula – Known Fo1: Estimation of copula parameter
Fo2 = mn Fo2 = t[3]

Sieve Ideal M-2step 2step Sieve Ideal M-2step 2step

θ = 0.22
(τ = 0.1)

Mean 0.2197 0.2174 0.2222 0.2282 0.2158 0.2174 0.2184 0.2236
Var 0.0049 0.0045 0.0049 0.0053 0.0048 0.0046 0.0048 0.0051
MSE 0.0049 0.0045 0.0049 0.0053 0.0049 0.0046 0.0048 0.0051

ÂV ar 0.0047 0.0045 0.0049 0.0053 0.0047 0.0046 0.0049 0.0053
AVar 0.0044 0.0043 0.0046 0.0049 0.0044 0.0043 0.0046 0.0049
AVarT 0.0044 0.0044

θ = 0.5
(τ = 0.2)

Mean 0.5018 0.4968 0.5019 0.5139 0.4959 0.4963 0.4955 0.5034
Var 0.0072 0.0062 0.0069 0.0084 0.0071 0.0063 0.0068 0.0080
MSE 0.0072 0.0062 0.0069 0.0086 0.0071 0.0063 0.0068 0.0080

ÂV ar 0.0068 0.0062 0.0073 0.0089 0.0068 0.0063 0.0072 0.0086
AVar 0.0065 0.0061 0.0069 0.0091 0.0065 0.0061 0.0069 0.0091
AVarT 0.0061 0.0061

θ = 2
(τ = 0.5)

Mean 2.0134 1.9992 1.9483 2.0039 2.0163 1.9993 1.9491 1.9794
Var 0.0214 0.0193 0.0212 0.0348 0.0215 0.0194 0.0213 0.0339
MSE 0.0216 0.0193 0.0239 0.0348 0.0218 0.0194 0.0239 0.0344

ÂV ar 0.0216 0.0194 0.0261 0.0403 0.0217 0.0195 0.0258 0.0392
AVar 0.0203 0.0191 0.0244 0.0402 0.0203 0.0191 0.0244 0.0402
AVarT 0.0196 0.0196

θ = 8
(τ = 0.8)

Mean 8.0780 8.0083 6.9319 7.8419 8.0911 8.0084 7.0131 7.7800
Var 0.1596 0.1539 0.4204 0.3141 0.1575 0.1537 0.3739 0.3054
MSE 0.1657 0.1539 1.5612 0.3391 0.1658 0.1537 1.3479 0.3538

ÂV ar 0.1615 0.1520 0.2550 0.4206 0.1622 0.1523 0.2682 0.4190
AVar 0.1520 0.1504 0.2231 0.3565 0.1520 0.1504 0.2231 0.3565
AVarT 0.1548 0.1548

θ = 18
(τ = 0.9)

Mean 18.1766 18.0088 12.4746 17.2412 18.1792 18.0082 12.7451 17.1128
Var 0.6974 0.6812 4.5407 1.5142 0.6985 0.6816 4.3782 1.4710
MSE 0.7285 0.6813 35.0708 2.0900 0.7306 0.6817 31.9927 2.2581

ÂV ar 0.6825 0.6550 1.2229 2.5173 0.6828 0.6561 1.3745 2.5706
AVar 0.6553 0.6433 1.3285 1.5661 0.6553 0.6433 1.3285 1.5661
AVarT 0.6559 0.6559

Fo1 = U [0, 1].

the dependence structure and the degree of dependence as measured by Kendall’s τ , our simulated

theoretical asymptotic variance (AVar) and our estimated asymptotic variance (ÂV ar) are close

to each other, and the simulated asymptotic variance (AVar) is very close to the true asymptotic

variance (AVarT). Because of these findings, in all the tables we use simulated theoretical asymptotic

variance (AVar) as a good approximate to the true theoretical asymptotic variance for general

semiparametric copula models.

Tables 1, 3, 4, 5 and 6 reveal several patterns on estimation of copula parameter θo under known

or parametric margin Fo1: (1) For small values of Kendall’s τ , the sample MSE and the estimated

asymptotic variance of the sieve MLE, the ideal estimator, the two-step estimator and the modified

two-step estimator are all very close; but as Kendall’s τ increases, the MSE and the estimated

asymptotic variance of the sieve MLE are significantly smaller than those of the two-step estimator.

(2) The asymptotic relative efficiency (ARE) of sieve MLE over the two-step estimator increases as

Kendall’s τ increases in absolute value. (3) For Clayton and Gumbel copulas, both Kendall’s τ and
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Table 2: Clayton copula – Known Fo1: Estimation of marginal distribution
Sieve, Fo2 = mn Empir., Fo2 = mn Sieve, Fo2 = t[3] Empir., Fo2 = t[3]
Fo2(q1) Fo2(q2) Fo2(q1) Fo2(q2) Fo2(q1) Fo2(q2) Fo2(q1) Fo2(q2)

θ = 0.22
(τ = 0.1)

Mean 0.3348 0.6703 0.3337 0.6664 0.3395 0.6668 0.3335 0.6668
Var 0.5128 0.4865 0.5501 0.5417 0.4459 0.4262 0.5530 0.5445
MSE 0.5151 0.4998 0.5503 0.5418 0.4845 0.4262 0.5530 0.5445

ÂV ar 0.5175 0.5167 0.5545 0.5544 0.5121 0.5313 0.5554 0.5552
AVar 0.5299 0.5418 0.5299 0.5418
AVarT 0.5387 0.5484 0.5556 0.5556 0.5387 0.5484 0.5556 0.5556

θ = 0.5
(τ = 0.2)

Mean 0.3345 0.6705 0.3334 0.6675 0.3393 0.6667 0.3331 0.6678
Var 0.4575 0.4562 0.5460 0.5619 0.4065 0.3991 0.5489 0.5661
MSE 0.4589 0.4710 0.5460 0.5626 0.4419 0.3991 0.5489 0.5675

ÂV ar 0.4798 0.4978 0.5542 0.5535 0.4710 0.5185 0.5551 0.5542
AVar 0.4824 0.5214 0.4824 0.5214
AVarT 0.4947 0.5287 0.5556 0.5556 0.4947 0.5287 0.5556 0.5556

θ = 2
(τ = 0.5)

Mean 0.3340 0.6702 0.3334 0.6679 0.3383 0.6659 0.3330 0.6683
Var 0.2540 0.3494 0.6163 0.5691 0.1953 0.2825 0.6189 0.5719
MSE 0.2544 0.3617 0.6163 0.5707 0.2196 0.2830 0.6190 0.5745

ÂV ar 0.2697 0.3864 0.5541 0.5531 0.2655 0.4017 0.5549 0.5539
AVar 0.2733 0.3971 0.2733 0.3971
AVarT 0.2836 0.4038 0.5556 0.5556 0.2836 0.4038 0.5556 0.5556

θ = 8
(τ = 0.8)

Mean 0.3333 0.6684 0.3329 0.6665 0.3364 0.6645 0.3326 0.6668
Var 0.0721 0.1323 0.5930 0.5813 0.0320 0.0895 0.5940 0.5801
MSE 0.0721 0.1355 0.5932 0.5813 0.0412 0.0943 0.5946 0.5801

ÂV ar 0.0782 0.1584 0.5537 0.5543 0.0798 0.1596 0.5545 0.5551
AVar 0.0828 0.1665 0.0828 0.1665
AVarT 0.0863 0.1692 0.5556 0.5556 0.0863 0.1692 0.5556 0.5556

θ = 18
(τ = 0.9)

Mean 0.3336 0.6677 0.3337 0.6665 0.3356 0.6647 0.3334 0.6669
Var 0.0201 0.0464 0.5692 0.5724 0.0086 0.0287 0.5691 0.5699
MSE 0.0202 0.0476 0.5693 0.5724 0.0138 0.0325 0.5691 0.5700

ÂV ar 0.0336 0.0830 0.5545 0.5542 0.0335 0.0637 0.5553 0.5551
AVar 0.0327 0.0723 0.0327 0.0723
AVarT 0.0393 0.0787 0.5556 0.5556 0.0393 0.0787 0.5556 0.5556

Fo1 = U [0, 1]; Fo2(q1) = 0.33, Fo2(q2) = 0.67.

Reported Var, MSE, ÂV ar, AVar, AvarT are the true values multiplied by 103.

the tail dependence increase as θ increases; for these copulas, the MSE, the estimated asymptotic

variance and the theoretical asymptotic variance of all the estimators increase as θ increases, see

Tables 1, 3 and 4. For Gaussian and the mixture copulas, Kendall’s τ increases in absolute value

as |θ| increases, but tail dependence does not change; for these copulas, the MSE, the estimated

asymptotic variance and the theoretical asymptotic variance of all the estimators decrease as |θ|
increases, see Tables 5 and 6. (4) the asymptotic variance of the modified two-step estimator is

always smaller than that of the two-step estimator, confirming asymptotic efficiency gains of making

use of one known or parametric margin information. In addition, for most values of Kendall’s |τ |
except large ones, the sample MSE of the modified two-step estimator is also smaller than that of

the two-step estimator. But for strong dependence as measured by large |τ |, the finite sample bias

and MSE of the modified two-step estimator is larger than those of the two-step estimator. The

modified two-step estimator has big MSE whenever there is very strong tail dependence that are
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Table 3: Clayton copula – Parametric Fo1
Copula parameter Sieve Empirical

Sieve Ideal M-2Step 2Step Fo2(q1) Fo2(q2) Fo2(q1) Fo2(q2)

θ = 0.22
(τ = 0.1)

Mean 0.2225 0.2190 0.2230 0.2281 0.3329 0.6677 0.3308 0.6637
Var 0.0051 0.0046 0.0051 0.0056 0.5216 0.5109 0.5806 0.5855
MSE 0.0051 0.0046 0.0051 0.0057 0.5217 0.5120 0.5870 0.5944

ÂV ar 0.0049 0.0045 0.0049 0.0053 0.5215 0.5366 0.5520 0.5566
AVar 0.0046 0.0043 0.0046 0.0049 0.5316 0.5428 0.5556 0.5556

θ = 0.5
(τ = 0.2)

Mean 0.5041 0.5019 0.5051 0.5160 0.3342 0.6681 0.3324 0.6647
Var 0.0073 0.0059 0.0074 0.0088 0.4829 0.5063 0.5499 0.6081
MSE 0.0073 0.0059 0.0074 0.0090 0.4836 0.5084 0.5507 0.6122

ÂV ar 0.0074 0.0063 0.0074 0.0088 0.4875 0.5141 0.5534 0.5557
AVar 0.0070 0.0061 0.0073 0.0091 0.4860 0.5229 0.5556 0.5556

θ = 2
(τ = 0.5)

Mean 2.0085 2.0050 1.9649 2.0068 0.3319 0.6673 0.3302 0.6634
Var 0.0276 0.0182 0.0280 0.0341 0.2779 0.3737 0.5467 0.5809
MSE 0.0277 0.0182 0.0292 0.0341 0.2800 0.3742 0.5568 0.5915

ÂV ar 0.0281 0.0196 0.0306 0.0404 0.2975 0.3986 0.5515 0.5568
AVar 0.0269 0.0191 0.0288 0.0402 0.2984 0.4012 0.5556 0.5556

θ = 8
(τ = 0.8)

Mean 8.0075 8.0175 7.1069 7.8285 0.3322 0.6677 0.3309 0.6631
Var 0.2033 0.1353 0.3524 0.3113 0.0837 0.1497 0.5756 0.5459
MSE 0.2034 0.1356 1.1501 0.3407 0.0850 0.1507 0.5813 0.5590

ÂV ar 0.2135 0.1533 0.2735 0.4252 0.0871 0.1707 0.5521 0.5572
AVar 0.2005 0.1504 0.2401 0.3565 0.0903 0.1739 0.5556 0.5556

θ = 18
(τ = 0.9)

Mean 17.8516 18.0442 13.1491 17.2123 0.3318 0.6688 0.3313 0.6636
Var 0.9031 0.5816 3.5128 1.4752 0.0401 0.0615 0.5631 0.5586
MSE 0.9251 0.5836 27.0442 2.0956 0.0423 0.0660 0.5674 0.5682

ÂV ar 0.8173 0.6625 1.4862 2.5965 0.0408 0.0885 0.5524 0.5567
AVar 0.7410 0.6433 1.3384 1.5661 0.0371 0.0742 0.5556 0.5556

Fo1 = N(0, β) with unknown β = 1; Fo2 = mn, Fo2(q1) = 0.33, Fo2(q2) = 0.67.

Reported Var, MSE, ÂV ar, AVar in last 4 columns are the true values multiplied by 103.

exhibited in the Clayton, Gumbel, survival-Clayton5 copulas with large θ.

Tables 2, 3, 4, 5 and 6 reveal several patterns on estimation of unknown margin Fo2 given known

or parametric margin Fo1: (1) As Kendall’s |τ | increases, the performance of the sieve MLE improves

greatly in terms of its sample variance, MSE and estimated asymptotic variance. This is expected

because the sieve MLE of Fo2 makes use of the dependence information between the two samples

{X1i} and {X2i}. (2) For very small values of |τ |, the performance of the empirical distribution

and that of sieve MLE are comparable, but for large values of |τ |, sieve MLE is much more efficient

than the empirical distribution. (3) For Clayton copula model with lower tail dependence, the

lower quantile is generally better estimated than the upper quantile in the sense of having smaller

theoretical asymptotic variance. For Gumbel copula model with upper tail dependence, the lower

quantile is generally more difficult to estimate than the upper quantile. For Gaussian copula model

with symmetric dependence and no tail dependence, the lower and upper quantile have about the

same sample MSE, estimated asymptotic variance and theoretical asymptotic variances.
5Simulation results on survival-Clayton are similar to those for Clayton and Gumbel copulas hence are skipped.
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Table 4: Gumbel copula – Known Fo1
Copula parameter Sieve Empirical

Sieve Ideal M-2Step 2Step Fo2(q1) Fo2(q2) Fo2(q1) Fo2(q2)

θ = 1.11
(τ = 0.1)

Mean 1.1121 1.1114 1.1137 1.1163 0.3356 0.6686 0.3342 0.6652
Var 0.0014 0.0013 0.0014 0.0015 0.5327 0.4454 0.5818 0.5245
MSE 0.0014 0.0013 0.0014 0.0015 0.5377 0.4491 0.5825 0.5266

ÂV ar 0.0014 0.0014 0.0015 0.0015 0.5295 0.5214 0.5548 0.5555
AVar 0.0014 0.0013 0.0014 0.0015 0.5383 0.5275 0.5556 0.5556

θ = 1.25
(τ = 0.2)

Mean 1.2529 1.2514 1.2539 1.2588 0.3359 0.6685 0.3350 0.6658
Var 0.0021 0.0019 0.0021 0.0024 0.5125 0.4223 0.5970 0.5706
MSE 0.0022 0.0019 0.0021 0.0025 0.5191 0.4258 0.5998 0.5714

ÂV ar 0.0023 0.0021 0.0023 0.0025 0.5100 0.4909 0.5555 0.5549
AVar 0.0022 0.0021 0.0022 0.0025 0.5171 0.4929 0.5556 0.5556

θ = 2
(τ = 0.5)

Mean 2.0098 2.0022 1.9936 2.0129 0.3351 0.6679 0.3353 0.6669
Var 0.0069 0.0062 0.0070 0.0100 0.3701 0.2496 0.5876 0.5676
MSE 0.0070 0.0062 0.0071 0.0101 0.3733 0.2510 0.5916 0.5676

ÂV ar 0.0075 0.0067 0.0079 0.0103 0.3706 0.3195 0.5557 0.5539
AVar 0.0070 0.0066 0.0078 0.0102 0.3694 0.3110 0.5556 0.5556

θ = 5
(τ = 0.8)

Mean 5.0421 5.0066 4.7379 4.9731 0.3329 0.6675 0.3335 0.6678
Var 0.0449 0.0407 0.0645 0.0804 0.1214 0.0700 0.5365 0.5453
MSE 0.0467 0.0408 0.1332 0.0811 0.1216 0.0708 0.5365 0.5465

ÂV ar 0.0471 0.0440 0.0566 0.0855 0.1491 0.1260 0.5543 0.5533
AVar 0.0445 0.0435 0.0638 0.0916 0.1491 0.1100 0.5556 0.5556

θ = 10
(τ = 0.9)

Mean 10.1075 10.0141 8.3804 9.7689 0.3329 0.6672 0.3336 0.6673
Var 0.1771 0.1636 0.6066 0.3265 0.0522 0.0222 0.5495 0.5402
MSE 0.1887 0.1638 3.2295 0.3799 0.0524 0.0225 0.5495 0.5406

ÂV ar 0.1874 0.1768 0.2575 0.4441 0.0681 0.0415 0.5544 0.5537
AVar 0.1762 0.1747 0.3252 0.4330 0.0689 0.0301 0.5556 0.5556

Fo1 = U [0, 1]; Fo2 = mn, Fo2(q1) = 0.33, Fo2(q2) = 0.67.

Reported Var, MSE, ÂV ar, AVar in last 4 columns are the true values multiplied by 103.

5.2.2 Bivariate copula models with two unknown margins

Tables 7, 8 and 9 report simulation results for Clayton, Gumbel and Gaussian copulas with unknown

but equal margins Fo1 = Fo2 = t[5]. The modified two-step estimator taking into account the

equal margin information is defined as the maximizer of
∑n

i=1 log{c(F̃ (X1i), F̃ (X2i), θ)}, where

F̃ (x) = {F̃n1(x) + F̃n2(x)}/2 (denoted as M-empirical). Table 10 reports results for Gaussian

copula with unknown and unequal margins Fo1 = t[5], Fo2 = mn.

For Gaussian copula with unknown margins, Klaassen and Wellner (1997) obtain the closed-

form expression of semiparametric efficient variance bound for estimation of Gaussian correlation

coefficient θo, and point out that the two-step estimator achieves this efficient variance bound. This

result allows us to compute theoretical asymptotic variance for the sieve MLE of θo as well, which

is reported as AVarT in Tables 9 and 10. Our simulation results in Tables 9 and 10 indicate that

both sieve MLE and two-step estimator of θo perform comparably regardless the value of Kendall’s

τ . Moreover, our simulated theoretical asymptotic variance (AVar) is again very close to the true

theoretical asymptotic variance (AVarT). Tables 9 and 10 also reveal that, although sieve MLE

of θo has no efficiency gain over the two-step estimator, but the sieve MLEs of marginals do have
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Table 5: Gaussian copula – Known Fo1
Copula parameter Sieve Empirical

Sieve Ideal M-2Step 2Step Fo2(q1) Fo2(q2) Fo2(q1) Fo2(q2)

θ = 0.9511
(τ = 0.80)

Mean 0.9515 0.9509 0.9478 0.9502 0.3334 0.6669 0.3324 0.6646
Var 0.0111 0.0106 0.0173 0.0242 0.1101 0.0910 0.5887 0.5466
MSE 0.0113 0.0106 0.0280 0.0250 0.1101 0.0910 0.5896 0.5510

ÂV ar 0.0132 0.0124 0.0214 0.0276 0.1317 0.1404 0.5533 0.5559
AVar 0.0126 0.0120 0.0176 0.0242 0.1268 0.1389
AVarT 0.0125 0.5556 0.5556

θ = 0.7071
(τ = 0.5)

Mean 0.7071 0.7062 0.7061 0.7090 0.3327 0.6675 0.3315 0.6646
Var 0.4189 0.3718 0.4276 0.5826 0.3206 0.3412 0.5715 0.6008
MSE 0.4189 0.3726 0.4287 0.5861 0.3209 0.3419 0.5748 0.6051

ÂV ar 0.4976 0.4330 0.5179 0.6341 0.3505 0.3588 0.5526 0.5558
AVar 0.4688 0.4178 0.4938 0.6621 0.3520 0.3579
AVarT 0.4688 0.5556 0.5556

θ = 0.1564
(τ = 0.1)

Mean 0.1545 0.1542 0.1553 0.1570 0.3324 0.6667 0.3307 0.6635
Var 2.0710 2.0661 2.0869 2.1716 0.5400 0.5349 0.5885 0.5946
MSE 2.0747 2.0709 2.0881 2.1720 0.5409 0.5349 0.5955 0.6045

ÂV ar 2.4865 2.3894 2.5063 2.5300 0.5282 0.5387 0.5519 0.5567
AVar 2.3611 2.3272 2.3782 2.4185 0.5465 0.5389
AVarT 2.3500 0.5556 0.5556

θ = −0.1564
(τ = −0.1)

Mean -0.1589 -0.1580 -0.1600 -0.1616 0.3323 0.6671 0.3309 0.6633
Var 2.0314 1.9856 2.0505 2.1571 0.5313 0.5147 0.5372 0.5249
MSE 2.0374 1.9882 2.0632 2.1839 0.5324 0.5148 0.5430 0.5362

ÂV ar 2.4691 2.3749 2.4908 2.5152 0.5281 0.5379 0.5522 0.5570
AVar 2.3595 2.3283 2.3623 2.4109 0.5466 0.5438
AVarT 2.3500 0.5556 0.5556

θ = −0.7071
(τ = −0.5)

Mean -0.7089 -0.7072 -0.7078 -0.7105 0.3330 0.6657 0.3319 0.6628
Var 0.3916 0.3508 0.4115 0.5835 0.3532 0.3248 0.5223 0.5352
MSE 0.3948 0.3508 0.4119 0.5952 0.3533 0.3258 0.5243 0.5505

ÂV ar 0.4911 0.4288 0.5118 0.6290 0.3482 0.3611 0.5530 0.5574
AVar 0.4684 0.4182 0.4804 0.6619 0.3598 0.3546
AVarT 0.4688 0.5556 0.5556

θ = −0.9511
(τ = −0.8)

Mean -0.9516 -0.9510 -0.9479 -0.9502 0.3331 0.6662 0.3316 0.6641
Var 0.0108 0.0103 0.0179 0.0255 0.1179 0.0966 0.4936 0.5702
MSE 0.0112 0.0103 0.0281 0.0262 0.1179 0.0969 0.4966 0.5766

ÂV ar 0.0131 0.0124 0.0213 0.0280 0.1321 0.1422 0.5529 0.5562
AVar 0.0126 0.0120 0.0156 0.0255 0.1356 0.1209
AVarT 0.0125 0.5556 0.5556

Fo1 = U [0, 1]; Fo2 = mn, Fo2(q1) = 0.33, Fo2(q2) = 0.67.

Reported Var, MSE, ÂV ar, AVar, AVarT are the true values multiplied by 103.

efficiency gains over the empirical distributions.

Tables 7 and 8 reveal several patterns on estimation of copula parameter θo under unknown

but equal margins: First, the patterns (1), (2) and (3) on estimation of copula parameter θo under

one known or parametric margin carry over here, except that the efficiency gain for large |τ | is not

as big as in the one marginal known or parametric case. This is as expected, because intuitively

the known or parametric marginal case represents stronger prior information than the equal, but

unknown marginals case. Second, the asymptotic variance of the modified two-step estimator for

θo is the same as that of the two-step estimator for θo, which means that the two estimators are

asymptotically equivalent. This is also consistent with the simulation results that sample MSE,
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Table 6: 0.9Gaussian(θ) + 0.1Clayton(0.5) copula – Known Fo1

Copula parameter Sieve Empirical
Sieve Ideal M-2Step 2Step Fo2(q1) Fo2(q2) Fo2(q1) Fo2(q2)

θ = 0.95
(τ = 0.72)

Mean 0.9507 0.9500 0.9468 0.9492 0.3330 0.6669 0.3314 0.6640
Var 0.0192 0.0187 0.0290 0.0325 0.1354 0.1067 0.5585 0.5623
MSE 0.0197 0.0187 0.0394 0.0331 0.1355 0.1068 0.5622 0.5696

ÂV ar 0.0208 0.0200 0.0287 0.0333 0.1509 0.1618 0.5526 0.5564
AVar 0.0205 0.0197 0.0235 0.0311 0.1452 0.1608 0.5556 0.5556

θ = 0.90
(τ = 0.67)

Mean 0.9008 0.8998 0.8972 0.8998 0.3328 0.6669 0.3313 0.6633
Var 0.0850 0.0799 0.0998 0.1269 0.2146 0.1739 0.5770 0.5696
MSE 0.0856 0.0800 0.1077 0.1269 0.2149 0.1740 0.5812 0.5812

ÂV ar 0.0872 0.0816 0.1026 0.1250 0.2120 0.2204 0.5524 0.5569
AVar 0.0855 0.0811 0.0945 0.1224 0.2070 0.2328 0.5556 0.5556

θ = 0.42
(τ = 0.28)

Mean 0.4184 0.4177 0.4197 0.4231 0.3325 0.6661 0.3310 0.6624
Var 1.8876 1.7746 1.8789 2.1290 0.4756 0.4566 0.6132 0.5936
MSE 1.8903 1.7799 1.8790 2.1388 0.4763 0.4570 0.6185 0.6116

ÂV ar 2.0847 1.9122 2.0798 2.2266 0.4687 0.4719 0.5521 0.5576
AVar 1.9925 1.8797 2.0431 2.2318 0.4957 0.4960 0.5556 0.5556

θ = 0.155
(τ = 0.11)

Mean 0.1526 0.1524 0.1535 0.1553 0.3319 0.6660 0.3301 0.6627
Var 2.7043 2.7098 2.7415 2.8631 0.5626 0.5049 0.6106 0.5718
MSE 2.7099 2.7164 2.7437 2.8631 0.5645 0.5053 0.6211 0.5879

ÂV ar 3.0627 2.9442 3.0873 3.1269 0.5251 0.5384 0.5513 0.5574
AVar 3.0121 2.9856 3.0260 3.0710 0.5258 0.5274 0.5556 0.5556

θ = −0.25
(τ = −0.11)

Mean -0.2526 -0.2514 -0.2542 -0.2568 0.3316 0.6662 0.3301 0.6625
Var 2.3795 2.3154 2.4230 2.5873 0.5223 0.4894 0.5409 0.5431
MSE 2.3861 2.3174 2.4404 2.6333 0.5253 0.4896 0.5512 0.5603

ÂV ar 2.9226 2.7943 2.9333 2.9786 0.5128 0.5126 0.5515 0.5576
AVar 2.8326 2.7606 2.8208 2.8821 0.5098 0.5133 0.5556 0.5556

θ = −0.50
(τ = −0.28)

Mean -0.5024 -0.5007 -0.5034 -0.5071 0.3324 0.6659 0.3311 0.6627
Var 1.4143 1.3295 1.4116 1.6505 0.4698 0.4376 0.5374 0.5365
MSE 1.4199 1.3299 1.4229 1.7011 0.4706 0.4383 0.5423 0.5523

ÂV ar 1.8148 1.6700 1.8093 1.9356 0.4585 0.4528 0.5523 0.5575
AVar 1.7924 1.6982 1.7571 1.9312 0.4763 0.4721 0.5556 0.5556

θ = −0.95
(τ = −0.67)

Mean -0.9508 -0.9500 -0.9465 -0.9490 0.3330 0.6664 0.3309 0.6638
Var 0.0183 0.0172 0.0283 0.0329 0.1452 0.1114 0.4975 0.5654
MSE 0.0190 0.0172 0.0405 0.0339 0.1453 0.1114 0.5034 0.5734

ÂV ar 0.0196 0.0189 0.0292 0.0347 0.1460 0.1528 0.5523 0.5565
AVar 0.0185 0.0179 0.0221 0.0316 0.1474 0.1605 0.5556 0.5556

Known margin is Fo1 = U [0, 1]; Fo2 = mn, Fo2(q1) = 0.33, Fo2(q2) = 0.67.

Reported Var, MSE, ÂV ar, AVar are the true values multiplied by 103.

estimated asymptotic variance of the two estimators are close to each other for all the different

copulas and all different value of τ .

Tables 7, 8 and 9 reveal several patterns on estimation of unknown but equal margins Fo2 = Fo1:

(1) As Kendall’s τ > 0 increases, both the sieve MLE and the modified empirical become worse

in terms of the Var, MSE, ÂV ar and AVar, but the modified empirical distribution deteriorates

faster than the sieve MLE. However, for Kendall’s τ < 0, as |τ | increases, both the sieve MLE

and the modified empirical become much better in terms of the Var, MSE, ÂV ar and AVar; see

Table 9.6 Intuitively, both sieve MLE and the modified empirical distribution make use of the
6We also find similar pattern for the mixture of Gaussian and Clayton copulas model with unknown but equal
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Table 7: Clayton copula – Margins are unknown but equal
Copula parameter Sieve M-Empirical

Sieve Ideal M-2Step 2Step Fo2(q1) Fo2(q2) Fo2(q1) Fo2(q2)

θ = 0.22
(τ = 0.1)

Mean 0.2132 0.2197 0.2169 0.2240 0.3367 0.6651 0.3315 0.6645
Var 0.0049 0.0045 0.0049 0.0052 0.2386 0.2359 0.2957 0.2942
MSE 0.0049 0.0045 0.0049 0.0052 0.2496 0.2384 0.2992 0.2989

ÂV ar 0.0048 0.0045 0.0052 0.0052 0.2800 0.2778 0.3090 0.2969
AVar 0.0045 0.0043 0.0049 0.0049 0.2712 0.2860 0.3110 0.2965

θ = 0.5
(τ = 0.2)

Mean 0.4929 0.5028 0.4941 0.5071 0.3370 0.6659 0.3324 0.6652
Var 0.0078 0.0058 0.0078 0.0080 0.3016 0.2729 0.3688 0.3391
MSE 0.0079 0.0058 0.0078 0.0080 0.3153 0.2736 0.3698 0.3413

ÂV ar 0.0074 0.0063 0.0086 0.0087 0.3347 0.3244 0.3445 0.3184
AVar 0.0070 0.0061 0.0091 0.0091 0.3305 0.3118 0.3448 0.3172

θ = 2
(τ = 0.5)

Mean 1.9937 2.0113 1.9518 1.9917 0.3368 0.6660 0.3327 0.6657
Var 0.0327 0.0187 0.0324 0.0342 0.3799 0.3399 0.4897 0.4168
MSE 0.0328 0.0189 0.0347 0.0343 0.3921 0.3403 0.4902 0.4177

ÂV ar 0.0286 0.0195 0.0392 0.0396 0.3938 0.3791 0.4417 0.3914
AVar 0.0271 0.0191 0.0402 0.0402 0.3910 0.3639 0.4421 0.3904

θ = 8
(τ = 0.8)

Mean 7.9258 8.0175 7.4861 7.7532 0.3342 0.6647 0.3306 0.6635
Var 0.2941 0.1353 0.2686 0.3104 0.3725 0.3352 0.5300 0.4721
MSE 0.2996 0.1356 0.5328 0.3713 0.3733 0.3390 0.5375 0.4822

ÂV ar 0.2319 0.1533 0.4066 0.4232 0.4055 0.3787 0.5189 0.4913
AVar 0.2206 0.1504 0.3565 0.3565 0.4118 0.3704 0.5210 0.4883

Fo1 = Fo2 = t[5]; Fo2(q1) = 0.33, Fo2(q2) = 0.67.

Reported Var, MSE, ÂV ar, AVar in last 4 columns are the true values multiplied by 103.

Table 8: Gumbel copula – Margins are unknown but equal
Copula parameter Sieve M-Empirical

Sieve Ideal M-2Step 2Step Fo2(q1) Fo2(q2) Fo2(q1) Fo2(q2)

θ = 1.11
(τ = 0.1)

Mean 1.1083 1.1119 1.1145 1.1141 0.3379 0.6666 0.3329 0.6654
Var 0.0014 0.0014 0.0015 0.0015 0.2588 0.2394 0.3143 0.2971
MSE 0.0014 0.0014 0.0015 0.0015 0.2792 0.2394 0.3145 0.2988

ÂV ar 0.0014 0.0014 0.0015 0.0015 0.2981 0.3188 0.3967 0.3543
AVar 0.0014 0.0013 0.0015 0.0015 0.2931 0.2994 0.3966 0.3529

θ = 1.25
(τ = 0.2)

Mean 1.2460 1.2521 1.2551 1.2547 0.3378 0.6668 0.3319 0.6657
Var 0.0024 0.0021 0.0025 0.0025 0.2630 0.2541 0.3264 0.3090
MSE 0.0024 0.0021 0.0025 0.0025 0.2833 0.2541 0.3285 0.3099

ÂV ar 0.0024 0.0021 0.0025 0.0025 0.3196 0.3462 0.4052 0.3609
AVar 0.0024 0.0021 0.0025 0.0025 0.3219 0.3383 0.4056 0.3598

θ = 2
(τ = 0.5)

Mean 1.9871 2.0044 1.9999 2.0018 0.3378 0.6674 0.3315 0.6654
Var 0.0095 0.0068 0.0098 0.0100 0.3071 0.2915 0.3672 0.3744
MSE 0.0097 0.0069 0.0098 0.0100 0.3273 0.2921 0.3706 0.3759

ÂV ar 0.0096 0.0067 0.0101 0.0100 0.3688 0.3609 0.4413 0.3917
AVar 0.0094 0.0066 0.0102 0.0102 0.3823 0.3545 0.4421 0.3904

θ = 5
(τ = 0.8)

Mean 4.9468 5.0119 4.8934 4.9411 0.3378 0.6665 0.3311 0.6642
Var 0.0758 0.0443 0.0721 0.0775 0.3505 0.3216 0.4373 0.4233
MSE 0.0786 0.0445 0.0835 0.0809 0.3687 0.3225 0.4424 0.4296

ÂV ar 0.0750 0.0441 0.0833 0.0828 0.4324 0.4352 0.5004 0.4602
AVar 0.0726 0.0435 0.0916 0.0916 0.4391 0.4467 0.5018 0.4576

Fo1 = Fo2 = t[5]; Fo2(q1) = 0.33, Fo2(q2) = 0.67.

Reported Var, MSE, ÂV ar, AVar in last 4 columns are the true values multiplied by 103.

margins, but we do not report them due to the lack of space.
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Table 9: Gaussian copula – Margins are unknown but equal
Copula parameter Sieve M-Empirical

Sieve Ideal M-2Step 2Step Fo2(q1) Fo2(q2) Fo2(q1) Fo2(q2)

θ = 0.9511
(τ = 0.80)

Mean 0.9506 0.9510 0.9496 0.9502 0.3365 0.6650 0.3311 0.6647
Var 0.0233 0.0115 0.0232 0.0232 0.4049 0.4106 0.5016 0.5599
MSE 0.0235 0.0115 0.0254 0.0240 0.4152 0.4133 0.5064 0.5640

ÂV ar 0.0240 0.0124 0.0277 0.0320 0.4066 0.3764 0.4961 0.4991
AVar 0.0222 0.0120 0.0242 0.0242 0.4172 0.4168
AVarT 0.0228 0.0228 0.0228 0.4938 0.4998

θ = 0.7071
(τ = 0.50)

Mean 0.7017 0.7070 0.7047 0.7059 0.3373 0.6675 0.3335 0.6665
Var 0.6976 0.4284 0.6729 0.6713 0.3639 0.3331 0.4110 0.3987
MSE 0.7273 0.4284 0.6789 0.6727 0.3792 0.3337 0.4110 0.3987

ÂV ar 0.6710 0.4281 0.6401 0.6640 0.3878 0.4005 0.4144 0.4145
AVar 0.6136 0.4178 0.6621 0.6621 0.3915 0.4033
AVarT 0.6250 0.6250 0.6250 0.4154 0.4126

θ = 0.1564
(τ = 0.10)

Mean 0.1544 0.1564 0.1573 0.1587 0.3375 0.6660 0.3334 0.6659
Var 2.5872 2.5490 2.6722 2.6616 0.2446 0.2449 0.2929 0.3198
MSE 2.5913 2.5490 2.6729 2.6667 0.2622 0.2453 0.2929 0.3204

ÂV ar 2.4966 2.3763 2.5099 2.5219 0.2952 0.3001 0.3038 0.3044
AVar 2.3895 2.3272 2.4185 2.4185 0.2929 0.2871
AVarT 2.3791 2.3791 2.3791 0.3032 0.3057

θ = −0.1564
(τ = −0.10)

Mean -0.1570 -0.1562 -0.1600 -0.1588 0.3369 0.6659 0.3327 0.6659
Var 2.5645 2.5023 2.6675 2.6672 0.1882 0.1933 0.2453 0.2527
MSE 2.5648 2.5024 2.6801 2.6728 0.2007 0.1939 0.2457 0.2532

ÂV ar 2.4855 2.3743 2.5118 2.5143 0.2467 0.2534 0.2519 0.2526
AVar 2.3870 2.3283 2.4109 2.4109 0.2431 0.2468
AVarT 2.3791 2.3791 2.3791 0.2514 0.2541

θ = −0.7071
(τ = −0.50)

Mean -0.7031 -0.7070 -0.7067 -0.7057 0.3355 0.6659 0.3321 0.6662
Var 0.6759 0.4261 0.6569 0.6601 0.1048 0.0988 0.1637 0.1647
MSE 0.6921 0.4262 0.6571 0.6621 0.1096 0.0994 0.1653 0.1649

ÂV ar 0.6570 0.4271 0.6424 0.6572 0.1500 0.1608 0.1655 0.1655
AVar 0.6142 0.4182 0.6619 0.6619 0.1539 0.1434
AVarT 0.6250 0.6250 0.6250 0.1656 0.1645

θ = −0.9511
(τ = −0.80)

Mean -0.9514 -0.9511 -0.9510 -0.9502 0.3360 0.6640 0.3316 0.6653
Var 0.0242 0.0120 0.0245 0.0261 0.0563 0.0563 0.1442 0.1479
MSE 0.0243 0.0120 0.0245 0.0268 0.0636 0.0633 0.1471 0.1496

ÂV ar 0.0227 0.0124 0.0283 0.0297 0.0900 0.0951 0.1395 0.1382
AVar 0.0227 0.0120 0.0241 0.0241 0.0914 0.0834
AVarT 0.0228 0.0228 0.0228 0.1390 0.1420

Fo1 = Fo2 = t[5]; Fo2(q1) = 0.33, Fo2(q2) = 0.67.

Reported Var, MSE, ÂV ar, AVar, AVarT are the true values multiplied by 103.

additional information in the observations from one distribution, say Fo2 to estimate the other

distribution Fo1. As the positive dependence between the two variables increases, there is less and

less information to add to the observations from Fo1, but as negative dependence increases, there is

more and more information to add. (2) For all values of |τ |, both the sieve MLE and the modified

empirical distribution perform much better than the empirical distribution.

5.3 Tri-variate Copula Models

We have also conducted Monte Carlo experiments for a number of other copulas and marginal

distributions in three dimensions. To save space, we only report a few results for two tri-variate
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Table 10: Gaussian copula – Margins are unknown and unequal
Copula parameter Sieve Empirical

Sieve Ideal 2Step Fo2(q1) Fo2(q2) Fo2(q1) Fo2(q2)

θ = 0.9511
(τ = 0.80)

Mean 0.9507 0.9511 0.9496 0.3352 0.6696 0.3327 0.6662
Var 0.0239 0.0128 0.0250 0.4501 0.4847 0.5593 0.6246
MSE 0.0240 0.0128 0.0270 0.4536 0.4930 0.5597 0.6248

ÂV ar 0.0240 0.0122 0.0282 0.4791 0.4867 0.5550 0.5558
AVar 0.0235 0.0120 0.0242 0.4844 0.4610
AVarT 0.0228 0.0228 0.5556 0.5556

θ = 0.7071
(τ = 0.50)

Mean 0.7063 0.7082 0.7085 0.3342 0.6694 0.3327 0.6661
Var 0.6541 0.4458 0.6255 0.5528 0.5265 0.6112 0.5982
MSE 0.6547 0.4471 0.6274 0.5537 0.5339 0.6115 0.5985

ÂV ar 0.6638 0.4233 0.6329 0.5315 0.5392 0.5549 0.5559
AVar 0.6443 0.4178 0.6621 0.5046 0.5244
AVarT 0.6250 0.6250 0.5556 0.5556

θ = 0.1564
(τ = 0.10)

Mean 0.1597 0.1609 0.1623 0.3344 0.6687 0.3327 0.6659
Var 2.5043 2.3994 2.5726 0.5513 0.5293 0.5713 0.5851
MSE 2.5148 2.4193 2.6073 0.5523 0.5335 0.5717 0.5857

ÂV ar 2.5545 2.3524 2.5056 0.5557 0.5614 0.5550 0.5561
AVar 2.4193 2.3272 2.4185 0.5404 0.5488
AVarT 2.3791 2.3791 0.5556 0.5556

θ = −0.1564
(τ = −0.10)

Mean -0.1505 -0.1521 -0.1533 0.3337 0.6687 0.3326 0.6661
Var 2.4909 2.3676 2.5554 0.5400 0.5286 0.5575 0.5760
MSE 2.5262 2.3865 2.5653 0.5401 0.5327 0.5580 0.5763

ÂV ar 2.5703 2.3778 2.5205 0.5563 0.5637 0.5549 0.5560
AVar 2.4163 2.3283 2.4109 0.5287 0.5364
AVarT 2.3791 2.3791 0.5556 0.5556

θ = −0.7071
(τ = −0.50)

Mean -0.7028 -0.7061 -0.7051 0.3337 0.6686 0.3332 0.6660
Var 0.6593 0.4217 0.6340 0.4952 0.5536 0.5251 0.6189
MSE 0.6778 0.4227 0.6381 0.4953 0.5575 0.5251 0.6193

ÂV ar 0.6760 0.4300 0.6432 0.5339 0.5318 0.5555 0.5560
AVar 0.6419 0.4182 0.6619 0.4987 0.5081
AVarT 0.6250 0.6250 0.5556 0.5556

θ = −0.9511
(τ = −0.80)

Mean -0.9505 -0.9510 -0.9493 0.3330 0.6679 0.3322 0.6654
Var 0.0245 0.0124 0.0236 0.4687 0.4669 0.5713 0.5550
MSE 0.0248 0.0124 0.0265 0.4688 0.4683 0.5725 0.5566

ÂV ar 0.0244 0.0123 0.0284 0.4822 0.4839 0.5546 0.5566
AVar 0.0236 0.0120 0.0241 0.4883 0.4785
AVarT 0.0228 0.0228 0.5556 0.5556

Fo1 = t[5], Fo2 = mn; Fo2(q1) = 0.33, Fo2(q2) = 0.67.

Reported Var, MSE, ÂV ar, AVar, AVarT are the true values multiplied by 103.

copula models: a mixture of Clayton and Gumbel copulas and the Student’s t copula, while all the

marginal distributions are assumed to be equal but otherwise unspecified.

The mixture of Clayton and Gumbel copulas is defined as

C(u1, u2, u3; θ) = λCC(u1, u2, u3; θ1) + (1− λ)CG(u1, u2, u3; θ2),

where the copula parameter is θ = (θ1, θ2, λ), θ1 ≥ 0, θ2 ≥ 1, 0 < λ < 1. This mixture copula has

positive pairwise dependence and asymmetric tail dependence. The tri-variate Student’s t-copula
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is

Ct(u1, u2, u3; θ) =
∫ u1

−∞

∫ u2

−∞

∫ u3

−∞

Γ(ν+3
2 )

Γ(ν
2 )

√
(πν)3|Σ|

(
1 +

(T−1
ν (s))′Σ−1T−1

ν (s)
ν

)− ν+3
2

ds1ds2ds3,

where the copula parameter is θ = (ρ12, ρ13, ρ23, ν), Σ is the correlation matrix with upper diagonal

elements ρ12, ρ13, ρ23 ∈ (−1, 1) and ν is the degree of freedom. The Student’s t-copula has positive

and negative pairwise dependence and symmetric tail dependence.

Tables 11 and 12 report results for these two tri-variate copula models, where the true un-

known margins are Fo1 = Fo2 = Fo3 = t[10], the true unknown mixture copula parameter is

θo = (15, 10, 0.25), and the true unknown Student’s t copula parameter is θo = (−0.9, 0.1,−0.5, 5).

The relative performance of different estimators is qualitatively the same as what we have observed

in the bivariate case. Since the multivariate Student’s t copula model has been widely used in

financial risk management, it is very encouraging to know that our sieve ML estimates of its copula

parameter and marginal distributions are not only asymptotically efficient but also perform well in

finite samples.

Table 11: Trivariate copulas: Estimation of copula parameters
Sieve Ideal 2step

Mixture of Clayton and Gumbel: θ = (θ1, θ2, λ) = (15, 10, 0.25)

Mean (15.1411, 9.8246, 0.2566) (15.0278,10.0164, 0.2495) (15.4347, 9.3144, 0.2751)
Var ( 3.0018, 0.3148, 0.0024) ( 2.1472, 0.1561, 0.0014) ( 3.0275, 0.2954, 0.0028)
MSE ( 3.0217, 0.3455, 0.0025) ( 2.1479, 0.1564, 0.0014) ( 3.2165, 0.7654, 0.0034)

Student’s t copula: θ = (ρ12, ρ13, ρ23, ν) = (−0.9, 0.1,−0.5, 5)

Mean (-0.8996, 0.1008, -0.5008, 5.6443) (-0.8999, 0.1013, -0.5014, 5.0572) (-0.8927, 0.0944, -0.5015, 5.4235)
Var ( 0.0185, 0.4884, 0.2890, 1.2455) ( 0.0152, 0.4410, 0.2372, 0.1941) ( 0.1369, 3.5522, 1.8233, 1.6428)
MSE ( 0.0187, 0.4891, 0.2896, 1.6615) ( 0.0152, 0.4427, 0.2391, 0.1974) ( 0.1902, 3.5835, 1.8255, 1.8222)

Fo1 = Fo2 = Fo3 = t[10].
Reported Var and MSE of {ρij} are the true values multiplied by 103.

Table 12: Trivariate copulas: Estimation of marginal distributions
Empirical M-Empirical Sieve

Fo1(q1) Fo2(q1) Fo3(q1) Fo1(q2) Fo2(q2) Fo3(q2) Fo1(q1) Fo1(q2) Fo1(q1) Fo1(q2)
Mixture of Clayton and Gumbel: θ = (θ1, θ2, λ) = (15, 10, 0.25)

Mean 0.2497 0.2502 0.2506 0.7565 0.7564 0.7568 0.2498 0.7570 0.2501 0.7569
Var 0.5187 0.5045 0.5363 0.4196 0.4454 0.4223 0.4893 0.3948 0.3856 0.2749
MSE 0.5188 0.5045 0.5367 0.4618 0.4864 0.4685 0.4893 0.4438 0.3856 0.3225

Student’s t copula: θ = (ρ12, ρ13, ρ23, ν) = (−0.9, 0.1,−0.5, 5)

Mean 0.2526 0.2435 0.2493 0.7564 0.7496 0.7512 0.2480 0.7528 0.2509 0.7550
Var 0.5045 0.4108 0.5019 0.4603 0.4927 0.5009 0.1169 0.1094 0.0618 0.0387
MSE 0.5113 0.4531 0.5024 0.5013 0.4929 0.5023 0.1209 0.1172 0.0626 0.0637

Fo1 = Fo2 = Fo3 = t[10]; Fo1(q1) = 0.25, and Fo1(q2) = 0.75.
Reported Var and MSE are the true values multiplied by 103.

Appendix A. Mathematical Proofs

Assumption 5. there exist constants ε1 > 0, ε2 > 0 with 2ε1 + ε2 < 1 such that (δn)3−(2ε1+ε2) = o(n−1),
and the followings (1)-(4) hold for all α̃ ∈ An with ||α̃ − αo|| ≤ δn and all v = (vθ, v1, ..., vm)′ ∈ V with
||v|| ≤ δn:
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(1)
∣∣∣Eo

(
∂2 log c(eα)

∂θ∂θ′ − ∂2 log c(αo)
∂θ∂θ′

)∣∣∣ ≤ c||α̃− αo||1−ε2 ;

(2)
∣∣∣Eo

({
∂2 log c(eα)

∂θ∂uj
− ∂2 log c(αo)

∂θ∂uj

} ∫ Xj vj(x)dx
)∣∣∣ ≤ c||v||1−ε1 ||α̃− αo||1−ε2 for all j = 1, ..., m;

(3)
∣∣∣Eo

({
∂2 log c(eα)

∂ui∂uj
− ∂2 log c(αo)

∂ui∂uj

} ∫ Xj vj(x)dx
∫ Xi vi(x)dx

)∣∣∣ ≤ c||v||2(1−ε1)||α̃−αo||1−ε2 for all j, i = 1, ...,m;

(4)
∣∣∣∣Eo

([
vj(Xj)
efj(Xj)

]2

−
[

vj(Xj)
foj(Xj)

]2
)∣∣∣∣ ≤ c||v||2(1−ε1)||α̃− αo||1−ε2 for all j = 1, ..., m.

In the following we denote µn(g) = 1
n

∑n
i=1[g(Zi)− Eo(g(Zi))] as the empirical process indexed by g.

Assumption 6. (1)

sup
α∈An:||α−αo||=O(δn)

µn

(
∂ log c(α)

∂θ′
− ∂ log c(αo)

∂θ′

)
= oP (n−1/2);

(2) for all j = 1, ...,m,

sup
α∈An:||α−αo||=O(δn)

µn

({
∂ log c(α)

∂uj
− ∂ log c(αo)

∂uj

} ∫
1(x ≤ Xj)Πnυ∗j (x)dx

)
= oP (n−1/2);

and (3)

sup
α∈An:||α−αo||=O(δn)

µn

({
1

fj(Xj)
− 1

foj(Xj)

}
Πnυ∗j (Xj)

)
= oP (n−1/2).

Assumptions 5 and 6 are sufficient conditions to control the second order term in the expansion of the
sample log-likelihood criterion function. They are easily satisfied when copula density is twice continuously
differentiable around true αo and the unknown marginal densities are in some smooth function classes (such
as Sobolev, Besov, Hölder classes) and are bounded away from zero. When unknown marginal densities are
smooth but approach zero at the tails, one might have to do some trimming or weighting to take care of the
tails; see e.g. Wong and Shen (1995)

Proof. (Theorem 1): Let εn be any positive sequence satisfying εn = o( 1√
n
) and (δn)3−ε = εn × o(n−1/2),

[for instance we can take εn = 1√
n log n

]. Also define r[α, αo, Zi] ≡ `(α, Zi) − `(αo, Zi) − ∂`(αo,Zi)
∂α′ [α − αo].

Then by definition of α̂, we have

0 ≤ 1
n

n∑

i=1

[`(α̂, Zi)− `(α̂± εnΠnυ∗, Zi)] = µn (`(α̂, Zi)− `(α̂± εnΠnυ∗, Zi)) + Eo (`(α̂, Zi)− `(α̂± εnΠnυ∗, Zi))

= ∓εn × 1
n

n∑

i=1

∂`(αo, Zi)
∂α′

[Πnυ∗] + µn (r[α̂, αo, Zi]− r[α̂± εnΠnυ∗, αo, Zi]) + Eo (r[α̂, αo, Zi]− r[α̂± εnΠnυ∗, αo, Zi]) .

In the following we will show that:

(A1.1)
1
n

n∑

i=1

∂`(αo, Zi)
∂α′

[Πnυ∗ − υ∗] = oP (n−1/2);

(A1.2) Eo (r[α̂, αo, Zi]− r[α̂± εnΠnυ∗, αo, Zi]) = ±εn × 〈α̂− αo, υ
∗〉+ εn × oP (n−1/2);

(A1.3) µn (r[α̂, αo, Zi]− r[α̂± εnΠnυ∗, αo, Zi]) = εn × oP (n−1/2).

Under (A1.1) - (A1.3), together with Eo

(
∂`(αo,Zi)

∂α′ [υ∗]
)

= 0, we have:

0 ≤ 1
n

n∑

i=1

[`(α̂, Zi)− `(α̂± εnΠnυ∗, Zi)] = ∓εn × µn

(
∂`(αo, Zi)

∂α′
[υ∗]

)
± εn × 〈α̂− αo, υ

∗〉+ εn × oP (n−1/2).

Hence
√

n 〈α̂− αo, υ
∗〉 =

√
nµn

(
∂`(αo,Zi)

∂α′ [υ∗]
)
+oP (1) ⇒ N (

0, ||υ∗||2) . This, Assumption 3 and Assumption

4(1) together imply
√

n(ρ(α̂)− ρ(αo)) =
√

n 〈α̂− αo, υ
∗〉+ oP (1) ⇒ N (

0, ||υ∗||2) .
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To complete the proof, it remains to establish (A1.1) - (A1.3). Notice that (A1.1) is implied by
Chebyshev inequality, i.i.d. data, and ||Πnυ∗ − υ∗|| = o(1) which is satisfied given Assumption 4(2). For
(A1.2) we notice

Eo (r[α, αo, Zi]) = Eo

(
`(α,Zi)− `(αo, Zi)− ∂`(αo, Zi)

∂α′
[α− αo]

)

= Eo

(
1
2

∂2`(αo, Zi)
∂α∂α′

[α− αo, α− αo]
)

+
1
2
Eo

(
∂2`(α̃, Zi)

∂α∂α′
[α− αo, α− αo]− ∂2`(αo, Zi)

∂α∂α′
[α− αo, α− αo]

)

for some α̃ ∈ An in between α, αo. It is easy to check that for any v = (vθ, v1, ..., vm)′ ∈ V, and α̃ ∈ An

with ||α̃− αo|| = O(δn) we have

Eo

(
∂2`(α̃, Z)
∂α∂α′

[v, v]− ∂2`(αo, Z)
∂α∂α′

[v, v]
)

= v′θEo

(
∂2 log c(α̃)

∂θ∂θ′
− ∂2 log c(αo)

∂θ∂θ′

)
vθ + 2v′θ

m∑

j=1

Eo

({
∂2 log c(α̃)

∂θ∂uj
− ∂2 log c(αo)

∂θ∂uj

} ∫ Xj

vj(x)dx

)

+
m∑

i=1

m∑

j=1

Eo

({
∂2 log c(α̃)

∂ui∂uj
− ∂2 log c(αo)

∂ui∂uj

} ∫ Xj

vj(x)dx

∫ Xi

vi(x)dx

)
−

m∑

j=1

Eo




[
vj(Xj)

f̃j(Xj)

]2

−
[

vj(Xj)
foj(Xj)

]2

 .

Under Assumption 5, we have

Eo (r[α̂, αo, Zi]− r[α̂± εnΠnυ∗, αo, Zi]) = −||α̂− αo||2 − ||α̂± εnΠnυ∗ − αo||2
2

+ oP (εnn−1/2)

= ±εn × 〈α̂− αo, Πnυ∗〉+
||εnΠnυ∗||2

2
+ oP (εnn−1/2) = ±εn × 〈α̂− αo, υ

∗〉+ oP (εnn−1/2)

where the last equality holds since Assumption 4(1)(2) implies

〈α̂− αo, Πnυ∗ − υ∗〉 = oP (n−1/2) and ||Πnυ∗||2 → ||υ∗||2 < ∞.

Hence (A1.2) is satisfied. For (A1.3), we notice

µn (r[α̂, αo, Zi]− r[α̂± εnΠnυ∗, αo, Zi])

= µn

(
`(α̂, Zi)− `(α̂± εnΠnυ∗, Zi)− ∂`(αo, Zi)

∂α′
[∓εnΠnυ∗]

)
= ∓εn × µn

(
∂`(α̃, Zi)

∂α′
[Πnυ∗]− ∂`(αo, Zi)

∂α′
[Πnυ∗]

)

where α̃ ∈ An is in between α̂, α̂± εnΠnυ∗. Since

∂`(α̃, Z)
∂α′

[Πnυ∗] =
∂ log c(α̃)

∂θ′
υ∗θ +

m∑

j=1

{
∂ log c(α̃)

∂uj

∫
1(x ≤ Xj)Πnυ∗j (x)dx +

Πnυ∗j (Xj)

f̃j(Xj)

}
,

(A1.3) is implied by Assumption 6.
The semiparametric efficiency is a direct application of Theorem 4 in Shen (1997).

Proof. (Proposition 1): Recall that the semiparametric efficiency bound for θo is I∗(θo) = Eo

{SθoS ′θo

}
,

where Sθo is the efficient score function for θo, which is defined as the ordinary score function for θo minus
its population least squares orthogonal projection onto the closed linear span (clsp) of the score functions
for the nuisance parameters foj , j = 1, ..., m. And θo is

√
n-efficiently estimable if and only if Eo

{SθoS ′θo

}
is non-singular ; see e.g. Bickel, et al. (1993). Hence (14) is clearly a necessary condition for

√
n-normality

and efficiency of θ̂ for θo.
Under Assumptions 2 and 3’, Propositions 4.7.4 and 4.7.6 of Bickel, et al. (1993, pages 165 - 168) for

bivariate copula models can be directly extended to the multivariate case; see also Klaassen and Well-
ner (1997, Section 4). Therefore with Sθo defined in (17), we have that I∗(θo) = Eo

{SθoS ′θo

}
is fi-

nite, positive-definite. This implies that Assumption 3 is satisfied with ρ(α) = λ′θ and ω = ∞ and
||υ∗||2 = ‖ρ′αo

‖2 = λ′I∗(θo)−1λ < ∞. Hence Theorem 1 implies, for any λ ∈ Rdθ , λ 6= 0, we have√
n(λ′θ̂ − λ′θo) ⇒ N (

0, λ′I∗(θo)−1λ
)
. This implies Proposition 1.
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Proof. (Propositions 2, 4, 6, 8): The consistency of these asymptotic variances can be established by
applying Ai and Chen (2003).

Appendix B. Asymptotic Variances of the Ideal MLE and Modified Two-step
Estimators of θo

To simplify notation and to save space, we present results for m = 2 and scalar θ only. We use θ̂I to
denote the ideal MLE and θ̃M the modified two-step estimator. The asymptotic variance of the ideal MLE
is [nI(θo)]−1, where

I(θo) ≡ E[− ∂2

∂θ2
log{c(Fo1(X1i), Fo2(X2i), θo)}].

Hence the asymptotic variance of θ̂I can be consistently estimated by

[nÎ(θ̂I)]−1 =

[
−

n∑

i=1

∂2

∂θ2
log{c(Fo1(X1i), Fo2(X2i); θ̂I)}

]−1

.

Two-step estimator with a parametric margin: When Fo1(·) = Fo1(·, βo) is known up to un-
known parameter βo ∈ int(B), the asymptotic variance of the modified two-step estimator is given by
([I(θo)] + V ar(W1(X1i, βo) + W2(X2i))) [I(θo)]−2, where

W2(X2i) = −
∫

I(Fo2(X2i) 6 u2)
d log(c(u1, u2, θo))

dθ

d log(c(u1, u2, θo))
du2

c(u1, u2, θo)du1du2,

W1(X1i, βo) = −E

[
d log(c(Uo1, Uo2, θo))

dθ

d log(c(Uo1, Uo2, θo))
du1

dFo1(X1, βo)
dβ

]

×
(

E{−∂2 log fo1(X1, βo)
∂β2

}
)−1

d log fo1(X1i, βo)
dβ

.

Using sample data and let F̃o1(·) = Fo1(·, β̃), we can estimate I(θo), W2(X2i) and W1(X1i, βo) respectively
by

σ̃2 =
−1
n

n∑

i=1

∂2

∂θ2
log(c(F̃o1(X1i), F̃n2(X2i), θ̃M )), (21)

W̃2(X2i) =
−1
n

∑

j: eFn2(X2j)> eFn2(X2i)

d log c(F̃o1(X1j), F̃n2(X2j), θ̃M )
dθ

d log c(F̃o1(X1j), F̃n2(X2j), θ̃M )
du2

(22)

W̃o1(X1i) =


−1

n

n∑

j=1

d log c(F̃o1(X1j), F̃n2(X2j), θ̃M )
dθ

d log c(F̃o1(X1j), F̃n2(X2j), θ̃M )
du1

dFo1(X1j , β̃)
dβ




×

−1

n

n∑

j=1

∂2 log fo1(X1j , β̃)
∂β2



−1

d log fo1(X1i, β̃)
dβ

.

Hence a consistent estimator of the asymptotic variance of θ̃M is given by

̂
avar(θ̃M ) =

1
nσ̃2

[
1 + σ̃−2 1

n

n∑

i=1

(
W̃o1(X1i) + W̃2(X2i)

)2
]

.
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Two-step estimator with a known margin: When Fo1(·) = Fo1(·, βo) is known with known βo, the
asymptotic variance of the modified two-step estimator θ̃M of θo is given by (I(θo) + var(W2(X2))) [I(θo)]−2,
and a consistent estimator of the asymptotic variance of θ̃M is given by

̂
avar(θ̃M ) =

1
nσ̃2

[
1 + σ̃−2 1

n

n∑

i=1

(
W̃2(X2i)

)2
]

,

where σ̃2 and W̃2(X2i) are given in (21) and (22) except we replace Fo1(·, β̃) by Fo1(·, βo).
Two-step estimator with equal but unknown margins: When Fo1 = Fo2 = Fo, the asymptotic
variance of the modified two-step estimator is (I(θo) + var{W1(X1) + W2(X2)}) [I(θo)]−2, where

Wk(Xk) = −
∫

I(Fo(Xk) 6 uk)
d log(c(u1, u2, θo))

dθ

d log(c(u1, u2, θo))
duk

c(u1, u2, θo)du1du2,

for k = 1, 2. Note that when Fo1 = Fo2, this asymptotic variance coincides with the asymptotic variance of
the original two-step estimator proposed in Genest, et al. (1995).

Using the sample data we can estimate I(θo) and Wk(Xki) respectively by

σ̃2 = − 1
n

n∑

i=1

∂2

∂θ2
log(c(F̃ (X1i), F̃ (X2i), θ̃M )),

W̃k(Xki) = − 1
n

∑

j: eF (Xkj)> eF (Xki)

d log(c(F̃ (X1j), F̃ (X2j), θ̃M ))
dθ

d log(c(F̃ (X1j), F̃ (X2j), θ̃M ))
duk

.

Hence a consistent estimator of the asymptotic variance of θ̃M is given by

̂
avar(θ̃M ) =

1
nσ̃2

[
1 + σ̃−2 1

n

n∑

i=1

(
W̃1(X1i) + W̃2(X2i)

)2
]

.
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