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Abstract

We propose a sieve maximum likelihood estimation (MLE) procedure for a broad class of
semiparametric multivariate distributions. A joint distribution in this class is characterized by
a parametric copula function evaluated at nonparametric marginal distributions. This class of
distributions has gained popularity in diverse fields due to a) its flexibility in separately modeling
the dependence structure and the marginal behaviors of a multivariate random variable, and
b) its circumvention of the “curse of dimensionality” associated with purely nonparametric
multivariate distributions. We show that the plug-in sieve MLEs of all smooth functionals,
including the finite dimensional copula parameters and the unknown marginal distributions, are
semiparametrically efficient; and that their asymptotic variances can be estimated consistently.
Moreover, prior restrictions on the marginal distributions can be easily incorporated into the
sieve MLE procedure to achieve further efficiency gains. Two such cases are studied in the
paper: (i) the marginal distributions are equal but otherwise unspecified, and (ii) some but not
all marginal distributions are parametric. Monte Carlo studies indicate that the sieve MLEs
perform well in finite samples, especially so when prior information on the marginal distributions
is incorporated.
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1 Introduction

Let {Z; = (X1iy..., Xmi)'}; be a random sample from the distribution Hy(z1,...,2m,) of Z =
(X1, 00, X)) in X X oo X Xy ©R™, m > 2. Assume that H, is absolutely continuous with respect
to the Lebesgue measure on R™ and let hy(z1, ..., Ty,) be the probability density function (pdf) of
Z. Clearly estimation of H, or h, is one of the most important statistical problems. Due to the
well-known “curse of dimensionality,” it is undesirable to estimate H, or h, fully nonparametrically
in high dimensions. This motivates the development of many semiparametric models for H,.

One class of semiparametric multivariate distributions has gained popularity in diverse fields
due to its flexibility in separately modeling the dependence structure and the marginal behaviors of
a multivariate random variable. To introduce this class, let F,; denote the true unknown marginal
cdf of Xj, j = 1,...,m. The characterization theorem of Sklar (1959) implies that there exists
a unique copula function C,() such that H,(X1,..., X;m) = Co(Fp1(X1), .o, Fom(Xm)). Suppose
that the functional form of the copula C,(uq,...,u;,) is known apart from a finite dimensional
parameter 6,, i.e., for any (uq,...,uy) € [0,1]™, we have Cy(u1, ..., Upm) = C(u1, ..., Um; 0,), where
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{C(u1,...;um;0) : 0 € O} is a parametric family of copula functions." Then the multivariate

distribution H, is of a semiparametric form:
Hy( X1,y Xon) = C(Fo1(X1), ooy Fomn(Xm); 00) (1)

with unknown finite dimensional parameter ¢, and infinite dimensional parameters Fy;, j =
1,...,m. Let fo;, 7 =1,...,m, and c¢(uy, ..., um; 0,) denote the pdfs associated with F,;, j = 1,...,m,
and C(uq, ..., um; 0,) respectively. Then for any (z1,...,2m) € X1 X ... X Xy, the pdf h, of H, given
by (1) has the representation: ho(z1, ..., Tm) = c(Fo1(21); s Fom(Tm); 00) [[721 foj(x;). We refer to
the class of multivariate distributions of the form (1) as the class of copula-based semiparametric
multivariate distributions.

This class of copula-based models achieves the aim of dimension reduction; as for any m,
the joint density ho(z1,...,Zn) depends on nonparametric functions of only one dimension. In
addition, the parameters in models of this class are easy to interpret: the marginal distributions F,;,
j =1,...,m, capture the marginal behavior of the univariate random variables X;, j = 1,...,m;
and the finite dimensional parameter 6,, or equivalently the parametric copula C(uq, ..., unm,6,),
characterizes the dependence structure between Xi,...,X,, that is invariant to any increasing
transformations of the univariate random variables X, j = 1,...,m. Given the existence of a large
number of parametric copulas and univariate distributions, this class of semiparametric multivariate
distributions is very flexible to model jointly any type of dependence with any types of marginal

behaviors, and has proven to be useful in diverse fields. Specific applications include those in finance

!Commonly used parametric copulas include the Gaussian copula, Student’s t copula, Clayton, Frank and Gumbel
copulas; see Joe (1997) and Nelsen (1999) for properties of many existing parametric copulas.



and insurance (e.g., Frees and Valdez (1998) and Embrechts, et al. (2002)); in survival analysis
(e.g. Joe (1997), Nelsen (1999) and Oakes (1989)); in econometrics (e.g. Lee (1983), Heckman and
Honore (1989), Granger, et al. (2003) and Patton (2004)), to name only a few.

To estimate the multivariate distribution H,(z1,...,%m) = C(F1(x1),. .., Fom(Tm);0,), one
has to estimate both the copula parameter 6, and the marginal cdfs F;;, j = 1,...,m. In current
literature, the most popular estimator of Fy; is the empirical cdf Fpnj(z;) = = >0 | 1{X}; < ;}
for 7 =1,...,m. And the most widely used estimator of 8, is the two-step estimator 6~7n proposed
by Oakes (1994) and Genest, et al. (1995):

0, = 1 Fn Xi,u-,an Xmi);0)| 2
arg max ;Ogc( 1(X14) (Xmi); 0) (2)

where ﬁnj(xj) = %H Yo 1{Xj; < x;} is the rescaled empirical cdf estimator of Fyj, j = 1,...,m.
Genest, et al. (1995) establish the root-n consistency and asymptotic normality of 511-2

In many applications, efficient estimation of the entire multivariate distribution Hy,(x1, ..., Tn) =
C(Fp1(x1)y. .., Fom(xm); 0,) is desirable, which requires efficient estimation of both the marginal
cdfs Fy,;, j = 1,...,m and the copula dependence parameter ,. Except when Xi,...,X,, are in-
dependent, it is clear that the empirical cdfs F,,;, j = 1,...,m are generally inefficient. Intuitively
one could obtain more efficient estimates of F,;, j = 1,...,m by utilizing the dependence informa-
tion contained in the parametric copula. Except for a few special cases, the two-step estimator of
the copula parameter 6, is inefficient in general (see Genest and Werker, 2002). This is because
the two-step estimator gn does not solve the efficient score equation for 6 in general. Currently
there are only two known special cases where the two-step estimator is asymptotically efficient; it
is efficient at independence (Genest, et al., 1995), and it is efficient for the Gaussian copula para-
meter when marginal cdfs are unknown (Klaassen and Wellner, 1997). Unfortunately even for the
bivariate Gaussian copula model with unknown margins, there is presently no efficient estimates
of univariate marginal cdfs; see Klaassen and Wellner (1997). For semiparametric bivariate sur-
vival Clayton copula models, Maguluri (1993) provides some efficiency score calculation for 6, and
conjectures that his proposed estimator might be efficient. For general bivariate semiparametric
copula models, Bickel, et al. (1993, chapter 4.7) present some efficiency bound characterizations
for ,, but no efficient estimators. For a bivariate copula model with one known marginal cdf and
one unknown marginal cdf, Bickel, et al. (1993, chapter 6.7) provide some efficiency bound calcula-
tions for the unknown margin, but again no efficient estimators. To the best of our knowledge (see

Klaassen and Wellner (1997), and Genest and Werker (2002)), there does not exist any published

2Shih and Louis (1995) independently propose the two-step estimator for i.i.d. data with random censoring. The
two-step estimator and its large sample properties have been extended to time series setting in Chen and Fan (2005a,
b). There are many earlier papers that propose specific estimators of the copula parameter 6, for specific parametric
copula models; see e.g., Clayton (1978), Clayton and Cuzick (1985), Oakes (1982, 1986) and Genest (1987).



work on efficient estimation of 6, and F,;, j = 1,...,m for general multivariate semiparametric
copula models.

In this paper, we propose a general sieve maximum likelihood estimation (MLE) procedure for
all the unknown parameters in a semiparametric multivariate copula model (1). This procedure
approximates the infinite-dimensional unknown marginal densities f,;, j = 1,...,m by linear com-
binations of finite-dimensional known basis functions with increasing complexity (sieves), and then
maximizes the joint likelihood with respect to the copula parameter and the sieve parameters of
the approximating marginal densities. Because our sieve MLEs of the marginal cdfs utilize all the
parametric dependence information, and our sieve MLE of the copula parameter effectively solves
an approximate efficient score equation for 6 (where the approximation error becomes negligible
as sample size grows large enough), intuition suggests that these estimators should be efficient.
By applying the general theory of Shen (1997) we can show that our plug-in sieve MLEs of all
smooth functionals, including the unknown marginal cdfs and the copula parameter, are indeed
semiparametrically efficient. As our sieve MLE procedure involves approximating and estimating
one-dimensional unknown functions (marginal densities) only, it avoids the “curse of dimensional-
ity” and is simple to compute. In addition, it can be easily adapted to estimating semiparametric
multivariate copula models with prior restrictions on the marginal cdfs to produce more efficient es-
timates. Examples of such restrictions include equal but unknown marginal cdfs, known parametric
forms of some (but not all) marginal cdfs. Results from an extensive simulation study for several
copula families and marginal cdfs in both bivariate and tri-variate models confirm the efficacy of
the sieve MLE.

Although we establish that the sieve MLEs of copula parameter and marginal cdfs achieve their
efficiency bounds, there is no closed-form expressions for the efficiency bounds of copula parameter
and marginal cdfs in general semiparametric copula models (except for a few special bivariate copula
models such as the bivariate Clayton copula model with one known margin). As a result, direct
estimation of the asymptotic variances of sieve MLEs using the analytic expressions of the efficiency
bounds is only possible for a few special copula models. Nevertheless, for general semiparametric
multivariate copula models with or without prior information on marginal cdfs, we are able to
provide simple consistent estimates of the asymptotic variances of the sieve MLEs of the copula
parameter and of the unknown marginal cdfs. This greatly broadens the applicability of our sieve
MLEs. Using the closed-form expressions in the special model of bivariate Clayton copula with
one known margin, we demonstrate via simulation that our consistent estimators of the asymptotic
variances of the sieve MLEs for both the copula parameter and the unknown marginals perform
extremely well.

The rest of this paper is organized as follows. Section 2 introduces the sieve MLEs of the

copula parameter and the unknown marginal cdfs in models with or without restrictions on the



marginal cdfs. In Section 3, we show that for semiparametric multivariate copula models with
unknown marginal cdfs, the plug-in sieve MLEs of all smooth functionals are root-n normal and
semiparametrically efficient. These results are then employed to deliver the root-n asymptotic
normality and efficiency of the sieve MLEs of the copula parameter and the marginal cdfs. We
also provide simple consistent estimators of the asymptotic variances of these sieve MLEs. Section
4 extends results in Section 3 to models with equal but unknown margins and models with some
parametric margins. Section 5 provides simulation results on finite sample performance of the sieve
MLEs for various models of different combinations of marginals and copulas that exhibit a wide
range of dependence structures. It also reveals some important features of the relative behaviors
of the sieve MLE of the copula parameter to the two-step estimator, and of the sieve MLEs of
the marginal cdfs to the empirical cdfs. Appendix A contains the proofs. Appendix B presents

asymptotic variances of the modified two-step estimator of 8, under restrictions on the marginals.

2 The Sieve ML Estimators

We first introduce suitable sieve spaces for approximating an unknown univariate density function

of certain smoothness, based on which we will then present our sieve MLEs.

2.1 Sieve Spaces for Approximating a Univariate Density

Let the true density function f,; belong to F; for j = 1,...,m. Recall that a space F,; is called a

sieve space for F; if for any g; € Fj, there exists an element II, g; € F,,; such that d(g;,II,g;) — 0

as n — oo where d is a metric on Fj; see e.g. Grenander (1981) and Geman and Hwang (1982).
There exist many sieves for approximating a univariate probability density function. In this

paper, we will focus on using linear sieves to directly approximate a square root density:

Konj 2
Fnj = [r,; (%) = ZakAk(x) ; /me (x)dz=1,, Kpj— o0, % — 0, (3)
k=1
where {Ag(-) : kK > 1} consists of known basis functions, and {a; : k& > 1} is the collection of
unknown sieve coefficients.

Before presenting some concrete examples of known sieve basis functions {Ag(-) : k& > 1}, we
first recall a popular smoothness function class used in the nonparametric estimation literature;
see, e.g. Stone (1982) and Robinson (1988). Suppose the support X; (of the true f,;) is either
a compact interval (say [0,1]) or the whole real line R. A real-valued function h on Xj is said
to be r-smooth if it is J times continuously differentiable on X; and its J-th derivative satisfies a
Holder condition with exponent v = r — J € (0,1] (i.e., there is a positive number K such that
|D7h(z) — D7h(y)| < K|z —y|" for all 2,y € X;). We denote A”(X;) as the class of all real-valued

functions on X; which are r-smooth; it is called a Holder space.
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The appropriate sieve bases for approximating functions in A"(X);) depend on the support Xj.
If the support is bounded such as &; = [0, 1], then functions in A"(X};) with > 1/2 can be well
approximated by the spline sieve Spl(s, K,,) with s > [r] (the largest integer part of r). The spline
sieve Spl(s, K,) is a linear space of dimension (K, + s 4+ 1) consisting of spline functions of degree
s with almost equally spaced knots ¢1,...,tx, on [0,1]. Let to, t1,...,tx,, tk,+1 be real numbers
with0 =1ty <t <.+ <tg, <tk,+1 =1 and maxo<p<r, (tp+1—tx) < const. minp<p<,, (tp+1—tk)-
Partition [0, 1] into K, + 1 subintervals I}, = [tg,tx41), k =0,..., K, —1, and Ik, = [tk,,tKk,+1]- A
function on [0, 1] is a spline of degree s with knots t1,...,tx, if it is: (i) a polynomial of degree s or
less on each interval Iy, k = 0,..., K,; and (ii) (s—1)-times continuously differentiable on [0, 1]. See
Schumaker (1981) for details on univariate splines. Other sieve spaces for approximating functions
in A"(X};) with » > 1/2 and X; = [0, 1] include the polynomial sieve Pol(K,,) = {Zngo arz®, v €
[0,1] : a, € R}, the trigonometric sieve TriPol(K,,) = {ao + S0 [ay, cos(kmx) + by sin(krz)], = €
[0,1] : ag,br € R} and the cosine series CosPol(K,) = {ao + Z,i(:"l ap cos(kmx), z € [0,1] : ay €
If the true unknown marginal densities are such that \/E € A" (X;), X; bounded interval,
then we can let F,; in (3) be
7o~ £) = Lo [lg@)de =1, Lo
g € Spl([r;] + 1, K,) or Pol(K,) or TriPol(K,,) or CosPol(kKy,)
There are also sieve bases that can be used to approximate densities with unbounded support:
X; = R. For example, (i) if the density f,; has close to exponential thin tails, we can use the
Hermite polynomial sieve to approximate it:

c PKn] a T—S0\k12 o 2
Foy = Sy lw) = Sl BT D o Loy (5)
€ >0,0>0,5,at €R, [ fk,,;(x)dz=1

as in Gallant and Nychka (1987); (ii) if the density f,; has polynomial fat tails, we can use the

spline wavelet sieve to approximate it:

Knj 2
Fui = i@ = |32 3 au? B, -1)| [ fic (el =1 (6)

k=01eky,

where B, (-) denotes the cardinal B-spline of order ~:
1 i Y 1
B) = gy 0 () b0y = 07 ©
7 (v—1)! ZZ; i
See Chui (1992, Chapter 4) for the approximation property of this sieve.

2.2 Sieve MLEs

To simplify presentation, regardless there is any prior information on marginal distributions, we
let ¢(c, Z;) denote the contribution of the i-th observation to the log-likelihood function and aj,

denote the sieve MLE for all the cases being considered in the paper.



First we consider the completely unrestricted case. Let « = (¢, f1, ..., fm)" and denote a, =

(00, fors s fom) € © X H;’;l Fj = A as the true but unknown parameter value. Let
m
Ua, Zi) = log{c(F1(X1i), s Fin(Xmi); 0) H i (Xji
j=1

in which Fj(X;;) = fX z < Xj)fj(x)dz, j = 1,...,m, and @, = (§g,ﬁ1,...,ﬁlm)’ € O x
H;-nzl Fnj = A, denote the sieve MLE:

n
O = argmax,e 4, Z U, Z;) (8)
i=1

where the sieve space F,; could be (4) if &} is a bounded interval, and could be (5) or (6) if X; = R.
The plug-in sieve MLE of the marginal distribution F,;(-) is given by Fn] z;) = [1(y < ;) fn]( )dy,
j=1,...,m

Remark 1: The sieve MLE optimization problem can be rewritten as an unconstrained optimiza-

tion problem:

n

m
0 ma%l Z{log C(Fl (X1i§ aln)a R Fm(Xmu amn + Z log f] X]zv a]n) + )\]npen(ajn)]}
sA1nsye-0mn
=1 7j=1

where for j =1,...,m, fj(Xji;aj,) is a known (up to unknown sieve coefficients a;y,) sieve approx-
imation to the unknown true f,;, and F;(Xj;;aj,) is the corresponding sieve approximation to
the unknown true F,;. The smoothness penalization term Pen(aj,) typically corresponds to the
Lo-norm of either the first derivative or the second order derivative of fjl/ 2(-; ajn), and Ajp’s are pe-
nalization factors. In our simulation study, we chose the penalization factors via cross-validation.
In principle, we could use any model selection methodology such as cross-validation, covariance
penalty (see, e.g., Shen and Ye (2002), Shen, et al. (2004)), among many others, to choose the
number of terms K,,; in the sieve approximation.

Note that once the unknown marginal density functions are approximated by the appropriate
sieves, the sieve MLEs are obtained by maximization over a finite dimensional parameter space.
The properties of the resulting sieve MLEs depend on the approximation properties of the sieves.
Prior restrictions on the marginal distributions can be easily taken into account in the choice of
the sieves, leading to further efficiency gain in the resulting sieve MLEs. We now illustrate this for
two cases.

The first is the case where the marginal distributions are the same, but unspecified oth-
erwise. Let F,; = F, (foj = fo) and &; = X for all j = 1,..,m. Let a = (¢, f) and
let ap, = (0., f,) € © x F; = A be the true but unknown parameter value. Let ¢(a, Z;) =
log{c(F(X1i), e, F(Xomi); )H] 1 f(Xji)} in which F(Xj) = [, 1z < Xj)f(x)dz, j = 1,...,m
Then the sieve MLE &, = ( s fn) € © x F,1 = A, is given by (8). This procedure can be easily

extended to the case where some but not all marginal distributions are equal.



Bickel, et al. (1993) consider a semiparametric bivariate copula model in which one marginal cdf
is completely known and the other marginal is left unspecified. The sieve ML estimation procedure
we just introduced can be easily modified to exploit this information. To be more specific, let
the marginal distribution Fj,; be of parametric form, i.e., Fyi(x1) = Fp1(x1,5,) for some 3, € B.
The marginal distributions F,g, ..., F,y, are unspecified. Let a = (6', 3, f2, ..., fm)" and denote
o = (0: B0s fors s fom) € © x B x [[[Ly F; = A as the true but unknown parameter value.
Let ((a,Z;) = Iog{c(Fol(Xli,B),...,Fom(Xmi);G) For (X1, B) T £5( ﬂ)} in which Fj(Xj;) =
fXJ_ 1(z < Xj;)fj(x)dx, j = 2,...,m. Then the sieve MLE denoted as &, = (@1, A,’l, Fro, ...,fnm)’ €
© x Bx [[ILy Fnj = A, is again given by (8). When F,;(+) is completely known as in Bickel, et al.
(1993), we simply take B = {(,}.

3 Asymptotic Normality and Efficiency of Smooth Functionals

Let p: A — R be a smooth functional and p(&,,) be the plug-in sieve MLE of p(«a,), where &, and
«, are defined in Section 2. In this section, we consider models with unrestricted marginals and
apply the general theory of Shen (1997) to establish the asymptotic normality and semiparametric
efficiency of the plug-in sieve MLE p(&y,) of p(ao).

3.1 Asymptotic Normality and Efficiency of p(d&,)

Let E,(-) denote the expectation under the true parameter «,. Let U, = (Upi,...,Upm) =
(Fo1(X1), ooy Fon(Xm)) and w = (uq,...,uy)" be an arbitrary value in [0,1]™. In addition, let
A(Fp1(X1)y ooy Forn(Xim); 60) = ¢(Us, 0,) = (o).

Assumption 1. (1) 6, € int(©), © a compact subset of R%; (2) for j = 1,...,m, \/fo; € A7 (X))
i > 1/25 (3) ap = (05, for,-.; fom)" is the unique maximizer of Eolf(a, Z;)] over A= 0 x [[}L; F.
with Fj = {f; = ¢> : g € A9 (X)), [[9(x)]?dz = 1}.

Assumption 2. the following second order partial derivatives are all well-defined in the neighbor-

. 0%logc(u,0) 0%logc(u,0) 02 logc(u,d) .
hood of a,: 002 0w, 00 0 Ou,Dur for j,k=1,....m

Denote V as the linear span of A—{a,}. Under Assumption 2, for any v = (vy, v1,...,vm) € V,
we have that ¢(a, + tv, Z) is continuously differentiable in small ¢ € [0,1]. Define the directional

derivative of /(«, Z) at the direction v € V (evaluated at «y,) as:

dl(a, + tv, Z) _ O, Z) . Ol ao, Z ol(a, Z
T B v e 7 Z af, vl
0log c(ay) " (dlog c(ao) / v;(X;)
Z 5\ 7o) Z 5\ To) < X,
B o) vy +Z{ sece) [1e < Xyt + 2



Define the Fisher inner product on the space V as
— o, Z) ol(c, Z)
.0 = £ | (255 20) (P52 m) )

and the Fisher norm for v € V as ||v||? = (v,v). Let V be the closed linear span of V under the

Fisher norm. Then (V, || - ||) is a Hilbert space. It is easy to see that V = {v = (v}, v1,...,vm) €
R x 172, Vi« [[v]| < oo} with

L ) R () I S

It is known that the asymptotic properties of p(é&;,) depend on the smoothness of the functional

p and the rate of convergence of &,. For any v € V, we denote

5/(;(30) [v] = lim[(p(0r0 + tv) — p(a)) /1]

whenever the right hand-side limit is well defined and assume:

Assumption 3. (1) for any v € V, p(a, +tv) is continuously differentiable in ¢ € [0, 1] near ¢t = 0,

and Do)
opla), %t
R

o veEV:||v||>0 ]|

< 0Q;

(2) there exist constants ¢ > 0,w > 0, and a small € > 0 such that for any v € V with ||v|| < e, we

have

Ip(ao)
15 [v]

plao +v) — plao) — < [[v]|*.

Under Assumption 3, by the Riesz representation theorem, there exists v* € V such that

(v*,v) = apa(o‘;’) [v] forallveV (11)
le
and )
8p(o¢o)
Ip(o) 12 ) do’ [v]‘
WP =55 IP= sup - < o0 (12)
da/ vEV:||v||>0 HUH2

We make the following assumption on the rate of convergence of &,:
Assumption 4. (1) ||a, — ao|| = Op(8,) for a decreasing sequence 6, satisfying (5,)* = o(n~'/?);
(2) there exists IT,v* € A, — {a,} such that &, x |[II,v* — v*|| = o(n~1/2).

Theorem 1. Suppose that Assumptions 1-4 and 5-6 stated in Appendix A hold. Then v/n(p(ay,)—
play)) = N (0, ||%H2> and p(ay,) is semiparametrically efficient.

Discussion of assumptions. Assumptions 1-2 are standard ones. Assumption 3 is essentially

the definition of a smooth functional. Assumption 4(1) is a requirement on the convergence rate



of the sieve MLEs of unknown marginal densities ﬁbj, j = 1,...,m. There exist many results on
convergence rates of general sieve estimates of a marginal density; see e.g., Shen and Wong (1994),
Wong and Shen (1995), and Van der Geer (2000). There are also many results on particular sieve
density estimates; see e.g. Stone (1990) for spline sieve, Barron and Sheu (1991) for polynomial,
trigonometric and spline sieves, Chen and White (1999) for neural network sieve, Coppejans and
Gallant (2002) for Hermite polynomial sieve. Assumption 4(2) requires that the Riesz representer
has a little bit of smoothness. Although Assumptions 3 and 4(2) are stated in terms of data
Z; = (X1, ..., Xm;)', and the Fisher norm |[v|| on the perturbation space V, it is often easier to

verify these assumptions in terms of transformed variables. Let

£9(0,1]) = {e 0,1] - R : /01 e(v)dv = O,/Ol[e(v)]de < oo} .

By change of variables, for any v; € V; there is a unique function b; € £9([0,1]) with b;(u;) =

%, and vice versa. Therefore we can always rewrite 86(5:,’2) [v] as follows:
0o (Uj
O, Z) 0, Uy)
T[’U] = T[(Ué, bl, ey bm)/]
0log c(ay) " (Ologc(a,) [UYes
TUG + jz; T /O bj(y)dy + b;(Uo;)
and

[ 2
bl = (W[<v5,bl,...,bm>’1)]

- 2

0log c(a,) " [ dlog caw) /Uoj
- E, ) (U,
o0 vy + E { ou ; bi(y)dy + b;(Usj)

Define

B =< b=(vh,b1,...bm) € R% x [T £5([0,1]) : []b]|> = E,
j=1

(Ha) | <

Then there is an one-to-one onto mapping between the two Hilbert spaces (B, ||-||) and (V, || -]]).

*

Now it is easy to see that the Riesz representer v* = (vy/,vf,...,v},) € V is uniquely determined

by b* = (v}, b, ...,b},) € B (and vise versa) via the relation:
vi(z5) = b (Foj(w5)) foj(w;) for all z; € X, for j=1,...m.

Then Assumption 4(2) can be replaced by
Assumption 4’(2): there exists I1,b* = (v}, IL107, ..., b, ) € R% x [T%, Bnj such that

2

R " [ Ologc(a,) [Yei gk *_p* L
Tb° 0|12 = B, Z{ oy {Hnbj—bj}@)dy*{“nbj‘bﬂ(Uoﬁ)} :O<n52>
g 0

Jj=1 n



where for j = 1,...,m, By, is a sieve for £3([0,1]).
Although many sieves including Spl(1, K,,), Pol(K,) and TriPol(K,) can be used as B, for

the space £3(]0,1]), due to its simple structure we recommend the following one:

K

B,; = {e(u) = Z axV'2 cos(kru), u € [0, 1], Zai < 00}
k=1

9

3.2 /n—Normality and Efficiency of /9\,1

We take p(a) = N6 for any arbitrarily fixed A € R% with 0 < |\| < oo. It satisfies Assumption
3(2) with %ﬁ‘,")[v] = Nwg and w = co. Assumption 3(1) is equivalent to finding a Riesz representer

v* € V satisfying (13) and (14):

N(O—0,) ={(a—ayv") foranya—a, €V (13)
e (0) Mo
op(a N % Nvg
||T,OH2=||U 1P = (v*,v") = sup 5 (14)
o VA0 WEV |[v]]
Notice that
| X'vg)? | XNvg|*
ouey 0~ s o Dlogetan) (Vo 2
v#£0WEV b£0beB | | [( 0%;/0&0) 4 Z] ) { quj Qo f % b (y)dy + bj(Uoj)}> }
= NT.(0,) "N =N (Bo[S5,85,]) " A
where U
dlogc(Uy,0,) s 0log c(U,, ,) °j
!/ Y 9 * * .
5, = H G - S [ stau g, (15)
and g7 = (g1, 95q,) € H 1 £3(10,1]),5 = 1,...,m solves the following infinite-dimensional

optimization problems for k =1, ..., dy,

2

. Ologc(U,, 8, " dlogc(U,,0,) [Ues
inf E, M—Z[M /0 956(0)dv + g1 (Uny)]

91,k €L3((0,1]) 90y, = du;

Therefore b* = (vy', b3, ..., b%,) with v} = Z.(6,) "'\ and bj(uj) = —g;(u;) X vg, and
V' = (Iay, =91 (For(21)) for(#1), -+, =g (Fom (@m)) fom (2m)) X I*(QO)_I)“

Hence (14) is satisfied if and only if Z.(0,) = E,[Ss, Sy ] is non-singular, which in turn is satisfied
under the following assumption:

Assumption 3% (1) 2 ca(g"’e o) alogggj"’e ) j =1,...,m have finite second moments;
J

10



2
3
4
5

Z(0,) = [810g <(Uo.0) Olog 3(9(,]"’9")] is finite and positive definite;

J 8661;6 9etubo) gy, U_j = 88 fc(u, 0o)du_; =0 for (j,—j) = (1,...,m) with j # —j;

2 0,) . . . . .
J 82?89 du_; = 8u 80 [ e(u,05)du_j =0 for (j,—j) = (1,...,m) with j # —j;
there exists a constant K such that

dlogc(U,, 0, 2
(1500 - ) B =uj] <K.
)

(2)
(3)
(4)
(5)

‘max sup E
]:1,...,m0<uj<1

We can now apply Theorem 1 to obtain the following result:

Proposition 1. Suppose that Assumptions 1-2,3’, 4 -6 hold. Then \/ﬁ(@z—HO) =N (O,Z*(QO)_l)

and @n is semiparametrically efficient.

To make inferences on 6, using the sieve MLE /H\n, we need to estimate its asymptotic variance
or Z,(60,). If there is a closed-form expression of Z,(6,) then it can be consistently estimated by the
direct plug-in estimator Z, (gn) Unfortunately, only recently Klaassen and Wellner (1997) derive a
closed-form expression of Z,(6,) for the bivariate Gaussian copula model with unknown margins.
In general there is no closed-form solutions of Z,(6,) for multivariate copula models with unknown
margins, hence direct plug-in estimation of Z,(6,) is difficult. We propose a sieve estimator of
Z.(0,) based on its characterization in (15). Let ﬁz = ((71i,---,(7mi)/ = (F\M(Xu), ...,ﬁnm(Xm,»))’

for i =1,...,n. Let A, be some sieve space such as:

A, = {(e1,...,eq) 1 €j(-) €Byp, j=1,....dp}, (16)
Kng Kng

B, = {e(u)= Zak\/icos(kwu), u € [0,1], Zaz < 00}, (17)
k=1 k=1

where K, — 00, (K,9)% /n — 0. We can now compute

~2 . j=1
0j = min — g .
: dlog c(B:.8, dlogc(©;.0,) 9
e i (7%5(9/ by (e L[ gi(w)dv + gj(sz‘)])

n ogce pzybn m og C pi,bn DZ - /
1 (%_Z; [%Jb] ( )dv—I—gj(Uji)]) X

Proposition 2. Under the assumptions in Proposition 1, we have: 55 = Z,(6,) + 0p(1).

3.3 Sieve MLE of F,;

For j = 1,...,m, we consider the estimation of p(a,) = Fyj(z;) for some fixed z; € X; by the

plug-in sieve MLE: p(a) = Fn] z;) = [1(y < x])fnj( )dy, where ﬁbj is the sieve MLE from (8).

Clearly 8p(a° fx (y < xj)vj(y)dy for any v = (vp,v1,...,vm) € V. It is easy to see that
w = 00 in Assumptlons 3 and 4, and
2
9p(c) 19 ‘ij 1y < @5)v;(y)dy
1220 e~ qup : <.
o veV:||v]|>0 HUH
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Hence the representer v* € V should satisfy (18) and (19):

R CO I v (X;5) o1 all

(v, 0) = SE 2] E((X< )fOJ( >) for all v € V (18)

||8pa((30) ||2 — ||U HQ — ||b>kH2 — jup |EO (1(UOJ S ﬁ‘g_|7|(2 J))bJ(UJ))‘ (19)
beB:||b]|>0

Proposition 3. Let v* € V solve (18) and (19). Suppose that Assumptions 1 - 2 and 4 - 6 hold.
Then for any fixed z; € X; and for j = 1,...,m, /n( n](x]) F,j(z;)) = N (0, |[v*||?). Moreover,

~

F,; is semiparametrically efficient.

Again for general semiparametric copula models including the Gaussian copula with unknown
margins, there are currently no closed-form solutions for the asymptotic variance ||v*||?. Neverthe-

less, we can again consistently estimate ||v*||? by the sieve method. Let
~ ~ 2
7 iy WU < Fnj() Yo (Uja)

og c(B.D) og (0B by 2
Iy [81 gaef vy + Yo [Pt fo bk ( du+bk(Um)]]

Ouy

~2
) s,
where U; = ( nl(Xh) ﬁnm(Xmi))’, and B,, is given in (17).
Proposition 4. Under assumptions in Proposition 3, we have for any fixed z; € X; and j = 1,...,m,
o (25) = |[v*[]* + 0p(1).
Remark 2: In the special case of the independence copula (c(uq, ..., um,8) = 1), we could solve

(18) and (19) explicitly. We note that for the independence copula,

Uk(Xi) vie(Xk) _
ZE <f0k Xk)fok(Xk)> for all v,v € V.

Thus (18) and (19) are satisfied with v} (X;) = {1(X; < ;) — E,[1(X; < 2;)]} fo;(X;) and v, =0
for all k£ # j. Hence

[0*|1? = Eo (1(X; < 25) {1(X; < a5) — BEo[L(Xj < 5)]}) = Foj(a;){1 — Foj(;)}.
Thus for models with the independence copula, the plug-in sieve MLE of F,; satisfies

Vi (Fug(a;) = Fog(a;)) = N (0, Foy(a; {1 = Fogla)}),

where its asymptotic variance coincides with that of the standard empirical cdf estimate F,j(x;) =
% Yo {Xj; < aj} of F,j. For models with parametric copula functions that are not independent,

we have [|[v*]|? < Fj(x;){1 — Fpj(x;)}.

4 Sieve MLE with Restrictions on Marginals

In this section, we present the asymptotic normality and efficiency results for sieve MLEs of 6, and

F,; under restrictions on marginal distributions considered in Section 2.

12



4.1 Equal but Unknown Margins

Now the Fisher norm becomes ||v||*> = E {az(amz)[ ]}? with

ol (v, Z) _ dlog c(Us, 0,) S dlog c(Us, 0,) /Xj Ul(Xj)
60/ [U] - 89/ Vo + jz; auj U1 (LB)dJE + fo(X]) ’

Up = (Fo(X1)y .o, Fo(Xim)) and v € V = {v = (vj,v1) € R% x V7 : |jv]| 